
Econ Theory (2015) 60:203–241
DOI 10.1007/s00199-015-0885-8

RESEARCH ARTICLE

Learning and market clearing: theory and experiments

Carlos Alós-Ferrer1 · Georg Kirchsteiger2

Received: 3 July 2013 / Accepted: 14 May 2015 / Published online: 4 June 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper investigates theoretically and experimentally whether traders
learn to use market-clearing trading institutions or whether other (inefficient) market
institutions can survive in the long run. Using a framework with boundedly rational
traders, we find thatmarket-clearing institutions are always stable under a general class
of learning dynamics. However, we show that there exist other, non-market-clearing
institutions that are also stable. Therefore, in the long run, tradersmay fail to coordinate
exclusively on market-clearing institutions. Using a replica-economies approach, we
find the results to be robust to large market size. The theoretical predictions were
confirmed in a series of platform choice experiments. Traders coordinated on platforms
predicted to be stable, including market-clearing as well as non-market-clearing ones,
while platforms predicted to be unstable were avoided in the long run.
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1 Introduction

The formation of a market requires a group of agents, some of them willing to buy and
some of them willing to sell. Preferences and cost functions are sufficient to develop
a theory whether market clearing is taken as granted. Actual markets, though, are not
merely characterized by demand and supply.Market exchange requires an institutional
framework in which action and message sets are specified and in which a process of
matching and price formation can take place.

An enormous variety of market institutions can be observed in the field, even for
the same good. Financial assets are traded following many different procedures (see
Madhavan 1992), e.g., call markets and continuous double auction. Real estate is sold
at auctions (Quan1994), throughbrokers (Zumpano et al. 1996), and bymeans of direct
negotiations. In some countries’ rental markets, established but informal institutions
bias the market in favor of the owners (e.g., group tenant visits in Switzerland). In
other countries, middlemen act as platforms which compete actively for tenants. In
addition, there is always an alternative “word-of-mouth” market tenants might resort
to.

These details of the market institution are consequential. In addition to theoret-
ical and empirical evidence, there is a large body of experimental evidence in this
direction.1 Trading rules affect the efficiency of the market outcome, the convergence
toward equilibrium, the volatility of the prices, and the distribution of surplus over
the market participants. Given that “institutions matter” and given the competition
between different market institutions, we might ask which institutions are used in the
long run. What are the properties of successful institutions? Do the surviving market
institutions support market clearing and efficient outcomes? Are there circumstances
under which inefficient trading rules can persist, or are forces and mechanisms present
that drive a market toward efficient organization?

Consumer-to-consumer internet auction platforms provide a good example of
competition between different market institutions. Although eBay currently has a
dominating position in this market, its competitors in the past included prominent
examples as Yahoo or Amazon (for an early history of competition in online auctions,
see Lucking-Reiley 2000). The trading rules of these auction platforms differed, e.g.,
in their ending rules and in the type of the Buy-Now option sellers could use. Exper-
imental (Ariely et al. 2005) and theoretical analysis (Reynolds and Wooders 2009)
reveals that the level of realized prices as well as efficiency are influenced by these
differences. A similar conclusion can be drawn for the possibility of secret reserve
prices (Bajari and Hortaçsu 2003) and for buy prices (Budish and Takeyama 2001).
In the context of multi-unit auctions, Ausubel and Cramton (2002) show that uniform
and pay-as-bid auctions lead to different realized prices. Hence, competing institutions
differ not only in their institutional setup, but the different institutional setups lead to
systematic differences in the realized prices.

The survival of a specificmarket institution depends on whether traders employ this
institution or avoid it. The decision about the use of a particularmarket institution gives

1 An overview of the classical experimental evidence on the importance of market institutions is provided
by Plott (1982) (see also Holt 1995).

123



Learning and market clearing: theory and experiments 205

rise to a game that combines aspects of a coordination and aminority game. On the one
hand, potential buyers and sellers have to coordinate on a particular institution in order
to make mutually beneficial trade possible. On the other hand, a trader is better off the
fewer competing traders opt for the same trading platform. Due to the coordination
aspect, such a game exhibits a multiplicity of Nash equilibria. All the traders might
coordinate on an institution that does not lead to market-clearing outcomes. They
might even coordinate on an institution that leads to a Pareto-inefficient outcome.
Hence, we ask under what circumstances traders will indeed learn to coordinate on
an efficient, market-clearing institution.

To provide an answer to this question, we conducted a theoretical and experimental
study of amarket for a homogeneous good. Potential traders have to choose simultane-
ously at which institution they want to trade. They choose between a market-clearing
institution and other institutions that do not lead to market clearing, but realize other
prices. Traders who have chosen such an institutionmight obtainmore favorable prices
but necessarily face rationing. The theoretical part of the analysis is based on a learning
modelwhere each trader has a tendency to switch fromone institution to a different one
next period if another institution exhibits better current-period results. Traders evaluate
the results according to evaluation functions that satisfy a number of weak behavioral
assumptions, compatible with standard microeconomic models but allowing also for
boundedly rational behavior. The learning model is related to stochastic models of
learning in games (see Fudenberg and Levine 1998, for an overview). In particular,
traders are not assumed to anticipate future prices, market clearing or otherwise. They
tend to switch to strategies (institutions) which are better in the current period, without
anticipating the effects of their strategy change. Within this framework, the market-
clearing institution is always stochastically stable independently of the characteristics
and the number of the other available institutions. This strong prediction, however,
does not imply that only market clearing will be observed in the long run. On the
contrary, we find that certain non-market-clearing institutions are also stochastically
stable. Hence, the theoretical analysis suggests that in the long run market-clearing
institutions will be used, but in general not exclusively.

The experimental test of this result concentrates on the learning aspect of the the-
oretical model. More specifically, groups of 14 subjects each had to choose between
two or three institutions. In the first treatment, the payoffs were designed in such a
way that subjects had to choose between a market-clearing and another stochastically
stable institution. In the second treatment, the choice was between the market-clearing
and a non-stable institution, while in the third treatment, the choice was between all
three institutions. The results show that whenever the market-clearing as well as the
other stochastically stable institution were available, there was no tendency to coordi-
nate on a single institution. Both institutions remained active in the long run, i.e., after
90 repetitions of the game. Subjects, though, learned to avoid the non-stable insti-
tution when available. We also found strong evidence that individual traders’ choice
behavior was in accordance with our learning model. Overall, the experimental results
confirmed the theoretical predictions.

The possibility that traders might choose between different trading institutions
plays a role in several existing models (e.g., Ishibuchi et al. 2002; Kugler et al. 2006;
Gerber andBettzüge 2007). Those, however, do not investigatewhether traders learn to
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coordinate on efficient institutions guaranteeing market-clearing prices and quantities.
There also exists a large experimental literature on learning in games, but to the best
of our knowledge this literature does not examine the question of on which trading
platforms traders coordinate.

The theoretical analysis in the paper at hand is related to our own work on com-
petition among simultaneously available trading institutions. Alós-Ferrer et al. (2010)
consider a game among two market designers confronted with boundedly rational
buyers and sellers, where all sellers are endowed with a constant-return-to-scale
technology. For any given characteristics of the institutions chosen by the market
designers, the game played between the buyers and the sellers is a particular case of
the model considered here.2 Alós-Ferrer and Kirchsteiger (2010) consider a related
modelwhere boundedly rational traders choose among different, possibly non-market-
clearing institutions within a general equilibrium framework. This approach, however,
is conceptually different from the model considered here. First, since the focus of
Alós-Ferrer and Kirchsteiger (2010) is on rationing, each institution is characterized
directly by a parameter determining the amount of rationing. Second, traders’ behav-
ior is modeled through probabilistic behavioral rules rather than evaluation functions.
Last, neither Alós-Ferrer and Kirchsteiger (2010) nor Alós-Ferrer et al. (2010) provide
an experimental test of the underlying learning approach.

The paper proceeds as follows. Next, we describe the model and its basic assump-
tions. In Sect. 3, we describe the learning process. Sections 4 and 5 present the stability
results for market-clearing and non-market-clearing institutions, respectively. Sec-
tion 6 investigates the robustness of the theoretical results with respect to market size.
Section 7 presents the experimental test of our model. Section 8 concludes. Proofs are
relegated to “Appendix 1,” and the experimental instructions are given in “Appendix 2.”

2 The model

There is a homogeneous good to be traded by a finite set I of n buyers and a finite set
J of m sellers. We denote the price of the good by p.

A typical buyer will be modeled through a demand function, and a typical seller
through a supply function satisfying the following assumptions.

M1 The demand function d : R+ → R+ ∪ {+∞} is continuous on [0,+∞) and
strictly decreasing in p in the rangewhere d(p) > 0. Further, d(0) > 0, d(p) ≥ 0
for all p ≥ 0, and lim p→∞ d(p) = 0.

M2 The supply function s : R+ → R+ is continuous and (weakly) increasing.
Further, s(0) = 0.

M3 There exists a price p > 0 with d(p) > 0 and s(p) > 0.

We allow for instance for linear demand functions of the form d(p) = max(a −
bp, 0), but also for everywhere-positive functions as d(p) = p−a , which are extended-

2 Alós-Ferrer et al. (2010) is an example of the “asymmetric rationality” approach. Another, recent example
is the location model of technology choice by Shi (2015), where rational managers set maximum capacities
and mobility constraints, and boundedly rational agents select a location and a technology.
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real because d(0) = +∞. Notice, though, that assumption M1 implies d(p) < +∞
for all p > 0.

For an individual trader, the market outcome is given by the price at which he trades
and by the quantity he can trade. In order to model the learning process, we describe
how buyers and sellers evaluate the market outcome. Denote by qS the quantity sold
by a typical seller, and by qB the quantity bought by a typical buyer. The evaluations of
the market outcomes, vB(qB, p) and vS(qS, p), depend on the quantity the traders buy
and sell, respectively, and on the price p at which they trade. Hence, the evaluations
(payoffs) are given by functions vB : R2+ → R and vS : R2+ → R.

The primitives in our model are the demand, supply, and the evaluation functions.
We want to emphasize that this framework is more general than the usual microeco-
nomic approach, where demand and supply are derived from maximization of the
payoffs (i.e., from utility and profit maximization). We have deliberately chosen this
general framework in order to allow for the possibility that demand and supply are
not based on rational choices of the agents. Furthermore, in our framework the evalu-
ation of the market outcome, which—as explained later in detail—drives the learning
process, need not be identical with consumers’ utility and producers’ profits. In other
words, we allow for more general (even boundedly rational) modes of behavior. For
example, our framework allows for producers whose supply is derived from profit
maximization, but who evaluate the market outcome by the revenue raised (with-
out taking production costs into account). Such an inconsistency between the supply
behavior and the learning process (which might, e.g., be due to the different divisions
within a firm deciding about quantity supplied and the market chosen) can be mod-
eled within our approach, since such a model fulfills our core assumptions (explained
below). It is worth emphasizing, however, that the usual microeconomic model of
utility-maximizing consumers and profit-maximizing producers is also covered by
our framework, as we will show later.

Demand and supply are given meaning by the following assumptions which relate
them to the evaluation of the market outcome.

A1 In the absence of rationing, a lower price is better for buyers and worse for sellers.
That is, for all p, p′ with p < p′,

vB(d(p), p) > vB(d(p′), p′) whenever d(p) > 0,

and vS(s(p), p) < vS(s(p
′), p′) whenever s(p′) > 0.

A2 Given the price, traders prefer not to be rationed. That is, for all p > 0 and all
0 < qB < d(p), 0 < qS < s(p),

vB(d(p), p) > vB(qB, p) and vS(s(p), p) > vS(qS, p).

A3 Given the price, traders prefer being rationed to not being able to trade. That is,
for all p > 0 and all 0 < qB < d(p), 0 < qS < s(p),

vB(qB, p) > vB(0) and vS(qS, p) > vS(0)
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where vB(0) = vB(0, p′) and vS(0) = vS(0, p′) for all p′ ≥ 0 are the payoffs of
not being able to trade, whichwe explicitly assume not to depend on (hypothetical)
prices.

Essentially, these assumptions are fulfilled as long as traders focus on getting more
favorable prices and dislike rationing. Of course, as the next examples show, standard
models fulfill A1–A3, but we want to emphasize that our results depend only on these
minimal properties.

Note that A3 does not state that traders prefer trading at any price over no trade. It
states that, if an institution offers a price such that the trader wishes to trade according
to the demand or supply function, then the evaluation of not trading is lower than the
evaluation of actually trading at that price. In other words, only if the price is low (high)
enough that the demand (supply) is strictly positive, buyers (sellers) prefer rationing
at a strictly positive quantity over not being able to trade at all.

Example 1 (Utility and ProfitMaximization) A first example fulfilling all assumptions
above is obtained as follows. Consider identical consumers endowed with a strictly
quasiconcave, continuous, and strictly monotone utility function. Fix the prices of all
goods except good 1, and denote by p−1 the vector of (fixed) prices of goods other
than 1. Assume the (reduced) demand function for good 1, d(p1) = x1(p1, p−1), to be
strictly decreasing in p1 (ruling out that it is a Giffen good). The consumers’ evaluation
of the market outcome is simply given by the utility derived from this outcome. That
is,

vB(qB, p1) = u(qB, x−1(W − p1qB, p−1)),

whereW denotes the consumer’s wealth, qB is the quantity of good 1 actually bought
by a buyer at the chosen institution (that is, taking into account possible rationing),
and x−1(W − p1qB, p−1) is the optimal demand for goods other than 1 given the
remaining wealth and the prices p−1.

Sellers are identical firms that produce good 1 with a strictly convex technology
without fixed costs, leading to an increasing supply function s1(p1). The evaluation
of the market outcome is given by profits, i.e.,

vS(qS, p1) = p1qS − C(qS),

where C is the cost function and qS is the quantity of good 1 actually sold by a seller
at the chosen institution.

It is easy to show that valuation and demand and supply functions constructed in
this way fulfill assumptions M1–M3 and A1–A3.

Example 2 (Consumer and Producer Surplus) Another specific way to derive val-
uation functions for the current model is to arbitrarily specify demand and supply
functions satisfying M1–M3, and let the evaluation of the market outcome be the cor-
responding consumers’ and producers’ surplus. It is easy to see that valuation functions
constructed in this way also fulfill assumptions A1–A3.
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As pointed out above,we viewourmodel as reasonably general. There are, however,
a number of simplifying assumptions which are made to ensure tractability and could
potentially be generalized. First and foremost, we consider a buyers–sellers model,
where traders’ roles are predetermined and immutable. One could alternatively con-
sider models where traders are endowed with excess demand functions, and can hence
become buyers or sellers depending on the realized prices. This is the approach taken
in Alós-Ferrer andKirchsteiger (2010). Second, within each type, traders are identical,
which greatly simplifies the analysis. The basic model could, however, be extended
to consider heterogeneous traders (as done, e.g., in Alós-Ferrer et al. 2010, where
buyers are heterogeneous). Third, buyers and sellers are endowed with continuous
demand and supply functions. This allows for a straightforward conceptualization of
market clearing close to standard microeconomic models, but stands in contrast with
other contributions in the theoretical and experimental literature which consider unit
demand and supply.

2.1 Trading institutions

The good can be traded at different market institutions. For any institution z, denote
by nz,mz the number of buyers and sellers active at z. If either nz = 0 or mz = 0,
then no trade takes place at z. If nz,mz > 0, let p∗(nz,mz) be the market-clearing
price at z, i.e., p∗(nz,mz) is the solution to

nzd(p) = mzs(p). (MC)

Under M1–M3, for every nz,mz > 0, there exists a unique p∗(nz,mz) solving
equation (MC), and it is strictly larger than zero. Note also that the equilibriumquantity
is strictly positive.3 Moreover, the market-clearing price p∗(nz,mz) depends only on
the ratio

r = nz
mz

through the implicit equation rd(p) = s(p), and hence, we can write p∗ = p(r). It
is important to note that the function p(r) is strictly increasing in r [because d(p) is
decreasing and s(p) is increasing in p].

Institutional biases come in many flavors, and it is frequently hard to formally pin
down the bias. We adopt a shortcut which nevertheless allows us to tackle a wide
range of examples. Because differences in the institutional setup lead to systematic
differences in the realized prices,we characterize the institutions directly by the trading
price generated by the institution, but abstract from the specific rules generating this
price. In order to accommodate different kinds of institutions, we give here a general
definition and proceed to illustrate it presenting some families of examples. Let

3 M1–M3 imply that there exists an equilibrium and that any equilibrium price is strictly larger than zero.
Because of M3 and monotonicity of supply and demand, any equilibrium quantity is strictly positive. Then,
by M1 demand at any equilibrium is strictly decreasing, implying uniqueness.
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S(n,m) =
{
(nz,mz) ∈ N

2 |1 ≤ nz ≤ n, 1 ≤ mz ≤ m
}

be the set of all feasible combinations of traders and sellers which can potentially
show up at the same institution.

Definition 1 An institution is characterized by a bias function, βz : S(n,m) → R++
whichmeasures the ratio between the actual price realizedunder thatmarket institution,
pz , and the market-clearing price. More specifically,

pz(nz,mz) = βz(nz,mz)p
∗(nz,mz).

We say that the institution z is market clearing if βz(nz,mz) = 1 for all (nz,mz) ∈
S(n,m). We say that it is biased in favor of the sellers, or simply that it is a seller
institution, if βz(nz,mz) > 1 for all (nz,mz) ∈ S(n,m). Analogously, we say that it is
biased in favor of the buyers, or simply that it is a buyer institution , if βz(nz,mz) < 1
for all (nz,mz) ∈ S(n,m).

According to this definition, trade at each institution occurs at only one particular,
deterministic price. One might want to give up these assumptions. It can be shown
that allowing for institutions that violate this intra-institutional “law of one price” or
for institutions with stochastic prices would not change our main results.4

We also remark that we do not assume that institutions are systematically biased in
favor of the sellers or the buyers. A given institution might yield βz(nz,mz) < 1 for
certain pairs (nz,mz), and βz(nz,mz) > 1 for others. Examples are given below.

If the price is not at the market-clearing level, we assume that the quantity traded
is determined by the “shorter” market side and that the other market side cannot trade
as much as it wishes according to its demand or supply function. This rationing is
assumed to be the same for every trader of the same market side. More specifically,
denote by Qz(nz,mz) the overall quantity traded at z.We can now distinguish between
three cases:

Case 1 βz(nz,mz) = 1. In this case, the market-clearing prices and quantities are
realized, and no trader is rationed. The institution is market clearing. The quantities are
given by Qz(nz,mz) = mzs(p∗(nz,mz)) = nzd(p∗(nz,mz)); q

z
B = d(p∗(nz,mz));

qzS = s(p∗(nz,mz)).

Case 2 βz(nz,mz) < 1. In this case, the price is below the market-clearing price,
and hence the quantity is determined by supply and buyers are rationed: Qz(nz,mz) =
mzs(pz(nz,mz)); q

z
S = s(pz(nz,mz)); q

z
B = mz

nz
s(pz(nz,mz)) < d(pz(nz,mz)).

Case 3 βz(nz,mz) > 1. In this case, the price is above themarket-clearing price, and
hence the quantity is determined by demand and sellers are rationed: Qz(nz,mz) =
nzd(pz(nz,mz)); q

z
B = d(pz(nz,mz)); q

z
S = nz

mz
d(pz(nz,mz)) < s(pz(nz,mz)).

4 A proof of this claim is available upon request. We have also implicitly assumed that institutions are
anonymous, i.e., the bias depends only on the number of sellers and buyers operating at the institution and
not on their identities. Our results remain valid if this assumption is relaxed.
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In summary, given an institution z characterized by a function βz(·, ·), and given
r = nz

mz
> 0 and β = βz(nz,mz), we can compute the seller and buyer quantities as

qzS(β, r) =
{
s (β · p(r)) if β ≤ 1
r · d (β · p(r)) if β ≥ 1

and

qzB(β, r) =
{ 1

r · s (β · p(r)) if β ≤ 1
d (β · p(r)) if β ≥ 1

At this point, we have to emphasize that we do not aim to analyze how a deviation
frommarket-clearing prices comes about. Rather, we just assume that market-clearing
institutions as well as institutions preventing markets from clearing are in principle
feasible. And the purpose of this paper is to investigate whether a non-market-clearing
institution can survive vis-a-vis a market-clearing one.

The formulation above is general enough to encompass many familiar examples.

Example 3 (Limit price institutions) An institution exhibits a price cap if there exist
pH > 0 ∈ R+ such that, for all (nz,mz) ∈ S(n,m),

βz(nz,mz) ≤ pH

p∗(nz,mz)
.

Analogously, an institution exhibits a price floor if there exist pL > 0 ∈R+ such that,
for all (nz,mz) ∈ S(n,m),

βz(nz,mz) ≥ pL

p∗(nz,mz)
.

Price caps are often observed in housingmarkets,whereas price floors are prominent
in labor markets—minimum wages.

Further, an institution exhibits a fixed price if there exist pF > 0 which is simulta-
neously a price floor and a price cap. Such extreme public price regulation has been
often observed for basic goods like food in wartime.

Other institutions do not exhibit a direct, public price regulation. Rather, market
institutions like the posted offer or the posted bid institution enhance trade at prices
systematically above or below themarket-clearing price. Themost simple type of such
institutions is the following.

Example 4 (Constant-bias institutions) A constant-bias institution z is characterized
by a bias parameter βz > 0, i.e., βz(nz,mz) = βz for all (nz,mz) ∈ S (n,m). Thus,
we can write

pz(nz,mz, βz) = βz p
∗(nz,mz).
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Constant-bias institutions are a simple, parametric example which will actually be
enough for some of our purposes.

Example 5 (Oligopolistic institutions)We say that a seller institution z is oligopolistic
if βz(nz,mz) is strictly larger than one and strictly decreasing in mz , for any given
nz . Such institutions arise, e.g., if the price is the result of a Nash equilibrium where
sellers internalize buyers’ demand and compete among themselves in quantities. The
intuition is simply that as more and more sellers compete (largermz), they lose market
power and the oligopolistic price approaches the competitive one (hence, the bias
approaches one).

Notice that, in this formulation, sellers’market power is embodied by the institution.
The market price p is higher than the market-clearing price. Still, at that market price,
sellers are rationed, i.e., sell less than s(p). For instance, if the market price is the
Cournot–Nash one, it is only after rationing takes place that the sellers exactly supply
the Cournot–Nash quantity. The institution, hence, can be seen as a coordination or
commitment device.

Remark 1 Although bias functions allow tomodelmany classes ofmarket institutions,
we explicitly exclude situations where there is a difference between the price paid by
the buyer and the one received by the seller, i.e., taxation policies or transaction
fees. This is, however, an important consideration. In related work (Alós-Ferrer et al.
2010), we have considered precisely this possibility in order to model markets actively
designed by market designers who receive part of the market revenues.

Remark 2 In our model, agents play two different roles. On the one hand, they are
boundedly rational players in a game of institution selection. On the other hand, once
an institution has been chosen, agents become traders at that institution. A crucial
assumption of the model (which we will make explicit below) is that institution choice
is based on past, observed outcomes, and the institutions’ characteristics affect institu-
tion choice through learning only. In particular, agents will not plan to, e.g., manipulate
their demand and supply functions when planning an institution choice. Obviously,
for any given institutional rationing scheme, traders might have an incentive to mis-
represent their true demand and supply functions. This, however, is also true for any
standard Arrow–Debreu framework if demand and supply functions are interpreted as
consciously known trader characteristics which can be “reported” to an auctioneer (see
also Alós-Ferrer and Kirchsteiger 2010, Remark 2). We abstract from this possibility
here. The simplest interpretation is that our agents are boundedly rational traders who
choose trading institutions on the basis of past performance, not anticipating neither
future results nor manipulation possibilities.

3 The learning process

3.1 The stage game

If more than one institution is available, traders themselves can choose the institu-
tion at which they want to be active. For example, if the price for a certain good is
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fixed by the state, traders might choose between the official market with the fixed
price, and a black market where trade is conducted at market-clearing prices. Labor
might be hired at the official market where a minimum wage legislation applies, and
at a black market without a price floor. Goods might be traded at a posted offer mar-
ket, where the price tends to be above the market-clearing level, and at a double
auction, where the market outcome tends to coincide with the competitive equilib-
rium.

In this section, we explicitly model the choice between trading institutions. Our
aim is to be able to predict which institution(s) will be observed to be active, and
whether the outstanding importance of market-clearing institutions in economics can
be justified by this choice process.

A generic trader is denoted by k, while i always denotes a buyer and j always
denotes a seller. There are Z + 1 institutions available, z = 0, 1, . . . , Z . Institution 0
is a market-clearing institution (β0 = 1). We make no assumption over the remaining
others. In particular, theremight be someother, competing,market-clearing institution.

We proceed now by formulating the choice process as a game. At first, all traders
choose, simultaneously and independently, the institutions at which they want to trade
the good.5 Then, for each trading institution z, the number of buyers and sellers
who have opted for this institution, nz and mz , and the bias function βz determine—
as described in Sect. 2.1—the price and the quantity exchanged at z. This in turn
determines the payoffs (evaluations) of the traders having opted for z.

This choice process has some features of a coordination game. If all traders coor-
dinate on a particular institution, every individual trader would be worse off if he
deviated to another institution, since by deviating he would lose all trading partners
(see A3). Hence, full coordination on any institution constitutes a strict Nash equilib-
rium and nothing guarantees coordination on the market-clearing institution. A3 also
ensures that these full-coordination equilibria are the only symmetric pure-strategy
Nash equilibria where all traders of the same type choose the same institution. On top
of these symmetric equilibria, asymmetric ones might also exist in general. Asym-
metric Nash equilibria, however, cannot be characterized within our rather general
theoretical framework, since they depend on the number of buyers and sellers, the
characteristics of the feasible trading institutions, and the exact specification of the
demand, supply, and evaluation functions.6

5 We abstract from multi-homing considerations here.
6 To see that asymmetric equilibria may exist in general, we can look ahead and consider the game played
by the subjects in treatment 1 of our experiment. Seven buyers and seven sellers had to choose between two
trading institutions, A and B. The resulting payoffs for buyers and sellers are given in Table 5 of Appendix
2, with n and m denoting the number of buyers and sellers opting for the particular institution. A direct
check of those tables shows that any strategy combination with exactly three sellers and three buyers opting
for A and four buyers and four sellers opting for B constitutes a pure-strategy Nash equilibrium. The same
holds for two buyers and two sellers opting for A, and for a lone buyer and a lone seller opting for A.
Straightforward but lengthy computations show that there exists no other asymmetric pure-strategy Nash
equilibrium; in particular, there exists no pure-strategy Nash equilibrium where more than three buyers and
three sellers opt for A, except for full coordination on A.
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3.2 The basic learning process

We proceed now to model the learning process. First, we define the state space Ω . A
state ω ∈ Ω is given by

ω = (ωB, ωS) ∈ {0, 1, . . . , Z}n × {0, 1, . . . , Z}m

That is, ω(k) ∈ {0, 1, . . . , Z} denotes the institution chosen by trader k at state ω.
Given a sample path of the dynamics, the state of the process at time t is denoted by
ωt = (

ωt
B, ωt

S

) ∈ Ω .
Since interactions are anonymous and traders are symmetric, the following notation

will turn out to be convenient:

nz (ω) = |{i ∈ I |ω(i) = z }|
mz (ω) = |{ j ∈ J |ω( j) = z }|

That is, nz (ω) ∈ {0, 1, . . . , n} is the number of buyers and mz (ω) ∈ {0, 1, . . . ,m}
the number of sellers choosing institution z, and n0 (ω)+· · ·+nZ (ω) = n,m0 (ω)+
· · · + mZ (ω) = m hold.

The learning process is based on the implicit assumption that traders understand
the strategic nature of the coordination problem. Therefore, they do not regard the
situation as an individual decision problem (as they would in a reinforcement learning
model). Furthermore, we assume that traders only know the prices and the quantities of
currently active institutions and, hence, do not have enough information to accurately
predict the outcomes in all trading institutions which are in principle feasible. Thus,
they lack the information necessary to compute a best reply to the current choices of
all other traders.

Suppose that a trader has the possibility to revise his choice of institution (we will
specify in which form revision opportunities arrive below). What can a trader do in
such a situation? From his individual (myopic) standpoint, if he considers himself to be
small relative to market size, the best thing he can do is to observe the outcomes (i.e.,
prices and quantities) of the currently active institutions and to evaluate these outcomes
through his own evaluation function. That is, he will switch to that institution whose
current prices and quantities he perceives as best according to his evaluation function.
A trader can perceive this behavior as approximately rational, since when he chooses
a new institution, the implied changes in prices and traded quantities will most of the
time be small, and hence, this behavior is close to best reply. Of course, in the current
(symmetric) model, this behavior could also be interpreted as imitation of successful
traders of the own market type. We want to stress, though, that the described behavior
does not require the observation of payoffs achieved by other traders, but merely prices
and traded quantities.

Fix a state ω. Call an institution z active if mz(ω) > 0 and nz(ω) > 0, and inactive
if mz(ω) = 0 or nz(ω) = 0. With this notation, the considerations above are captured
by the following assumption.
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D0 Traders who receive the opportunity to revise observe prices and traded quantities
at all active institutions. Then, they choose the institution which yields the best
outcome as evaluated by their own evaluation functions and go there next period
(ties broken randomly).7

That is, provided that trader k receives revision opportunity at period t , in period
t + 1, he will choose an institution among those that in period t were yielding the
highest observed payoffs for traders of his own type. Note that an agent takes his
decision for period t + 1 given the state ωt and the associated payoffs. This decision
determines the institution chosen for period t + 1. Combining all such decisions of
the individual traders determines ωt+1 and, hence, the basic dynamics.

3.3 Revision opportunities

When can agents revise their choices? It is common in learning models to explicitly
introduce some inertia allowing for the possibility that not all agents are able to revise
strategies simultaneously. Different specifications are possible. One prominent exam-
ple is independent inertia (e.g., Samuelson 1994; Kandori and Rob 1995), where each
agent has an independent, strictly positive probability of not being able to switch.
A different example is asynchronous learning (e.g., Binmore and Samuelson 1997;
Benaïm andWeibull 2003; Blume 2003), where each period one and only one agent is
able to revise, all agents having strictly positive probability of receiving the revision
draw. In our case, a natural variant of this dynamics would be asynchronous learn-
ing within types, where in every period, only one buyer and one seller are selected
(randomly and independently) and given the opportunity to revise.

Different specifications of how revision opportunities arrive give rise to different
dynamics and often affect the results (see, e.g.,Alós-Ferrer and Netzer 2010). Rather
than adopting a specific formulation, we postulate a general class of dynamics encom-
passing the standard examples mentioned above and many others (see Alós-Ferrer
2003 and Alós-Ferrer and Netzer 2010 for a discussion).

Let E(k, ω) denote the event that agent k receives revision opportunity when the
current state is ω, and let E∗(k, ω) ⊆ E(k, ω) denote the event that agent k is the only
agent of his type (i.e., the only buyer or the only seller) receiving revision opportunity
in ω. With this notation, the general class of dynamics we consider is given by the
following assumptions.

D1 Pr (E∗(k, ω)) > 0 for every agent k and state ω.

Notice that D1 implies that Pr (E(k, ω)) > 0, i.e., every agent has strictly positive
probability of being able to revise at any given state. Further, since we have two clearly

7 Inactive institutions are not even observed, since no price is even posted. Hence, in the extreme case in
which all institutions are inactive, traders simply stay at their respective institutions.We find this assumption
plausible in this context. Alternatively, we could assume that, if there is no activity at any of the institutions,
traders switch to some other institution randomly. This assumption would make states with complete
inactivity easier to leave and hence “less stable.” Our results would remain unchanged with this assumption,
the intuition being that such states are neither stochastically stable nor crucial for transitions to stochastically
stable states.

123



216 C. Alós-Ferrer, G. Kirchsteiger

differentiated populations, we introduce a weak form of independence between the
revision opportunities in those populations (it can be thought of as an anonymity
requirement).

D2 For every agent k and state ω, either Pr
(
E∗(k, ω) ∩ E∗(k′, ω)

)
> 0 for any agent

k′ of the other type, or Pr
(
E∗(k, ω) ∩ E(k′, ω)

) = 0 for any such k′.
Assumptions D1 and D2 are rather general. It is easy to see that they are fulfilled by

the standard types of revision opportunities mentioned above. For instance, a particu-
lar example is independent inertia, where each trader receives the revision opportunity
with a fixed probability 0 < λ < 1, independent across traders and periods. A dif-
ferent example is asynchronous learning within types, where each period only one
buyer and only one seller are selected to revise. Intermediate and mixed specifications
are allowed.8 The reason we explicitly choose Assumptions D1–D2 is that, in the
literature of learning in games, predictions are not always robust to minute changes
in the assumptions on the dynamics. We want to make explicit that our model is not
so sensitive to the details of the dynamics (see Alós-Ferrer and Netzer 2015, for a
discussion).

In our context, it is plausible that traders aremore likely to revisewhen the perceived
gains from revision are higher. For instance, one might postulate that the probability
of revision increases with the difference between the payoff at the institution currently
chosen by the trader and the largest payoff generated at any other institution. For the
case of two institutions, this would be equivalent to the proportional imitation rule
of Schlag (1998). Such a sensitivity of revision opportunities to payoff differences
is allowed by the specification above, since the revision probability Pr (E(k, ω)) is a
function of the state ω.

3.4 Stochastic stability

The dynamics described till now is a Markov chain on the (finite) state space Ω , to
which standard treatment applies (see, e.g., Karlin and Taylor 1975). We refer to this
dynamics as the unperturbed process.

Given two states ω,ω′, denote by P(ω, ω′) the probability of transition from ω to
ω′ in one period. An absorbing set of the unperturbed dynamics is a minimal subset
of states which, once entered, is never abandoned. An absorbing state is an element
which forms a singleton absorbing set, i.e., ω is absorbing if and only P(ω, ω) = 1.

In general, the unperturbed process presents amultiplicity of absorbing sets. In order
to select among them, and following the literature, the dynamics is enriched with a
perturbation in the form of mistakes or experiments as follows. With an independent
probability ε > 0, each agent, in each period, might make a mistake (“mutate”) and
simply pick an institution at random,9 independently of other considerations. This

8 Assumption D2 explicitly precludes revision opportunity correlations, e.g., of the form “seller 13 always
gets to revise whenever buyer 3 revises, but no other seller gets the chance.”
9 We mean that an institution is picked up according to a pre-specified probability distribution having full
support, for instance uniformly. It is well known that the exact distribution does not affect the stochastic-
stability results, as long as it has full support.
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can be interpreted literally as a decision mistake or, alternatively, as an experiment
on the side of the agent. For instance, such an experiment might correspond to an
agent being replaced by a new, inexperienced one which simply builds some arbitrary
theory, or to an agent discarding past information and being attracted to a new insti-
tution after observing an institutional (unmodeled) marketing campaign. Crucially, in
case of experimentation also any inactive institution is chosen with a strictly positive
probability.

The dynamics with mistakes (experimentation) is called a perturbed learning
process. Since experiments make transitions between any two states possible, the
perturbed process has a single absorbing set formed by the whole state space. Such
processes are called irreducible. An irreducible process has a unique invariant distri-
bution , i.e., a distribution over states μ ∈ �(Ω) which, if taken as initial condition,
would be reproduced in probabilistic terms after updating (more precisely, μ · P = μ

where P is the matrix of transition probabilities).
For a given ε, the corresponding invariant distribution is denoted byμ (ε). The limit

invariant distribution (as the rate of experimentation tends to zero)μ∗ = limε→0 μ (ε)

exists and is an invariant distribution of the unperturbed process (Kandori et al. 1993;
Young 1993; Ellison 2000). The limit invariant distribution singles out a stable pre-
diction of the unperturbed dynamics in the sense that, for any ε > 0 small enough,
the play approximates that described by μ∗ in the long run. The states in the support
of μ∗, i.e., {ω ∈ Ω | μ∗ (ω) > 0} are called stochastically stable states or long-run
equilibria. The set of stochastically stable states is a union of some absorbing sets of
the original, unperturbed chain (ε = 0).

We will rely on the characterization of the set of stochastically stable states intro-
duced by Kandori et al. (1993) and Young (1993) and further developed by Ellison
(2000). Detailed overviews can be found, e.g., in Fudenberg and Levine (1998) or
Samuelson (1997).

4 Stochastic stability of market-clearing institutions

We proceed now to analyze the complete model. A first intuition for our main results
is obtained when we compare the payoffs sellers and buyers receive at simultaneously
active market-clearing and non-market-clearing institutions.

Lemma 1 Assume A1 and A2. Consider any distribution of traders on any number of
institutions, where both a market-clearing institution 0 and another institution z are
active. Let pz = pz(nz,mz). Then, the following holds:

For βz(nz,mz) �= 1: If vS(q0S, p0) ≤ vS(q
z
S, pz), then vB(q0B, p0) > vB(qzB, pz).

Hence, if vB(q0B, p0) ≤ vB(qzB, pz), then vS(q0S, p0) > vS(q
z
S, pz).

For βz(nz,mz) = 1: Either vS(q0S, p0) ≤ vS(q
z
S, pz) and vB(q0B, p0) ≥

vB(qzB, pz), or the reverse (weak) inequalities hold.

Lemma 1 shows that, whenever traders of a given market side obtain larger payoffs
in a biased institution than their counterparts in the market-clearing one, traders of
the other market side which are active in the market-clearing institution must obtain
larger payoffs than those active in the biased one. This result is crucial for the analysis
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of the learning model. Intuitively, it points out a reason for (some) traders to move
toward the market-clearing institution in the presence of another one.

We are interested in the stability of institutions. Clearly, every monomorphic state,
where all traders coordinate in one and the same institution, constitutes an absorbing
state. These are actually the only relevant absorbing states. In principle (and par-
ticularly for dynamics with asynchronous learning), there might be non-singleton
absorbing sets. However, the following proposition shows that those would be made
up of states where the market-clearing institution z = 0 is never active.

Proposition 1 Assume A1, A2, and A3. Under D0, D1, and D2,

(i) the absorbing states of the unperturbed dynamics are the “separated states” ω

such that there is no active institution at all, and all monomorphic states ωz

characterized by nz (ωz) = n and mz (ωz) = m, corresponding to coordination
on a particular institution;

(ii) no state ω with 1 ≤ n0 (ω) ≤ n − 1 and 1 ≤ m0 (ω) ≤ m − 1 (i.e., where the
market-clearing institution is active but not all traders of any type are in it) is part
of any absorbing set of the unperturbed dynamics.

We remark, however, that this is just an intermediate result. It is a standard fact
(see the general references quoted above) that only states in absorbing sets can be
stochastically stable, and hence, the last proposition restricts the class of states relevant
for the analysis, but not all absorbing states will be stochastically stable. Further, the
key states for the analysis below are the monomorphic states.10 Since those states
correspond to full coordination on a particular market institution, we aim to identify
which monomorphic states are stochastically stable.

Definition 2 We say that an institution z ∈ {0, . . . Z} is stochastically stable if the
corresponding monomorphic state ωz characterized by

nz (ωz) = n and mz (ωz) = m

is stochastically stable.

Intuitively, a stochastically stable institution is one such that, in the long run, traders
frequently coordinate on it. In principle, several institutions could be stochastically
stable, but if a particular institution is not, we can assert that, in the long run, this
institution will be simply not be used by traders.

Our first main result establishes that market-clearing institutions are always active
in the long run.

Theorem 1 Assume M1–M3 and A1–A3, and consider any dynamics satisfying D0–
D2. Any market-clearing institution is stochastically stable.

10 Separated states are also absorbing because, if all institutions are inactive, no prices are observed and
traders do not switch. This is inconsequential. Separated states are extremely unstable. Specifically, they
are destabilized with a single mutation, in which one trader moves to an institution containing at least one
trader of the other type. By Lemma 2 in Appendix 1, the outcome of the now-active institution is better for
all traders than that of the inactive institution. Hence, traders at the inactive institution will switch whenever
revision opportunities arise.
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This result implies that, independently of which other institutions are available,
coordination on the market-clearing one will always be observed at least (a non-
negligible) part of the time in the long run. It is striking that this result is completely
independent of what the characteristics of other institutions are. A market-clearing
institution remains stochastically stable independently of how many other institutions
are available and what their characteristics are, from limit pricing to oligopolistic
institutions or any conceivable alternatives. Furthermore, whenever traders coordinate
on a market-clearing institution, the market is efficient.11

Remark 3 A common criticism on the literature of learning in games is that the speed
of convergence to the predicted outcomes might depend inversely (and exponentially)
on population size and hence the predictions might be irrelevant for large population
sizes. This criticismdoes not affect our results. The technical reason [seeEllison (2000)
for details] is that the number of mutations involved in the stability analysis is small
(two) and independent of population size. Intuitively, the transitions that destabilize
non-market-clearing institutions in favor of market-clearing ones only require a few
experiments, followed by high-probability revisions where traders imitate successful
behavior.

5 Stable non-market-clearing institutions

In the previous section, we have shown that market-clearing institutions are always
stochastically stable. However, it turns out that there exists also stochastically stable
biased institutions. Strikingly, it is possible to show that even some constant-bias
institutions are stochastically stable, independently of which other institutions are
available.

In general, the effects of a bias on the payoffs of the traders are ambiguous. Take
as an example an active institution z where prices are higher than the equilibrium
price (βz(nz,mz) > 1). Recall the notation r = nz/mz for the buyers–sellers ratio
at z (0 < r < ∞). Compared to a market-clearing institution having exactly the
same r , prices as well as quantities are unfavorable for buyers, and a further increase
in βz would lead to a further decrease in buyers’ payoffs. For sellers, the situation is
different. For them, prices at z are more favorable than at a market-clearing institution.
This comes at the price of a decrease in the quantity sellers can sell. Therefore, the
impact of a further increase of βz on sellers’ payoffs is unclear.

To build an intuition, consider the standard case with demand and supply derived
from utility and profit maximization. Under standard assumptions, the price set by a
cartel formed by all the sellers is strictly larger than the market-clearing price. Hence,
for a given number of buyers and sellers, a small increase of β above one should be
beneficial for the sellers (and, of course, detrimental for the buyers).

11 Due to the efficiency properties of the equilibrium, we view this result as “good news.” In certain
contexts, however, the interpretation might be different. A black labor market might be considered as a
market-clearing institution which competes with regulated labor markets. Our result might thus provide an
insight into the stability of moonlighting.
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Similar considerations can be made for the impact of the bias on the buyers. For
prices close to the equilibrium price, the positive direct effect of a price decrease on the
consumers is larger than the negative effect due to the decrease in consumed quantity.

These considerations lead to Assumption A4 below. Given a realized bias βz =
βz(nz,mz) > 0 and given r = nz

mz
> 0, the payoffs for buyers and sellers at institution

z can be rewritten as

VB(βz, r) = vB
(
qzB(βz, r), βz · p(r)) and VS(βz, r) = vS

(
qzS(βz, r), βz · p(r)) .

The payoffs of, say, the buyers are given by VB (βz, r); from the buyers’ point of
view, though, they depend just on the actually experienced bias and buyers–sellers
ratio. The following assumption spells out the effects of small deviations of the equi-
librium price from the realized one for a given ratio of buyers and sellers.

A4 For any fixed ratio of buyers and sellers r with 0 < r < ∞, there exist β(r) <

1 < β(r) such that VB(β, r) > VB(1, r) for all β(r) < β < 1, and VS(β, r) >

VS(1, r) for all 1 < β < β(r).

This condition is immediately fulfilled if the buyer’s payoff VB(β, r) is strictly
decreasing in β at β = 1,12 and the seller’s payoff VS(β, r) is strictly increasing in β

at β = 1.
Note that the comparison of payoffs spelled out in this assumption is fundamentally

different from the results of Lemma 1. There, the comparison was between payoffs
yielded by two simultaneously active institutions with different traders, while in A4,
the comparison is implicitly between payoffs yielded by two different institutions,
provided that the buyers–sellers ratio is the same in both of them.

Assumption A4, though, is instrumental for showing that there are some non-
market-clearing institutions fulfilling a property analogous to the one spelled out in
Lemma 1, i.e., there is always a reason for some traders to move toward them even in
the presence of a market-clearing institution.

Definition 3 Fix the number of buyers and sellers operating on the whole market. An
institution F �= 0 is favored if, given any distribution of these traders on (only) F
and the market-clearing institution 0 such that both of them are active, the following
holds:

If vS(q0S, p0) ≥ vS(qF
S , pF ), then vB(q0B, p0) < vB(qF

B , pF ) (or, equivalently, if
vB(q0B, p0) ≥ vB(qF

B , pF ), then vS(q0S, p0) < vS(qF
S , pF )).

Favored institutions are those such that a statement analogous to Lemma 1 holds
for them versus the market-clearing one. This is actually enough to show that favored
institutions are stochastically stable.

Theorem 2 Assume M1–M3 and A1–A4, and consider any dynamics satisfying D0–
D2. Let z ∈ {1, . . . , Z} be any favored institution. Then, independently of which other
institutions are available, z is stochastically stable.

12 Neither VB (β, r) nor VS(β, r) are in general differentiable at β = 1, because at this point there is a
transition from rationing of the demand side to rationing of the supply side. Hence, the traded quantity as
a function of β has a “kink” at β = 1.
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This result shows that, potentially, there might exist stochastically stable, non-
market-clearing institutions. In order to actually establish their existence, it is enough
to investigate under which circumstances do such favored institutions exist.

Obviously, one can just take the maximum β(r) and minimum β(r) among all
(finitely many) buyers–sellers ratio which are actually possible. The intuition would
be that institutions which always yield biases between those bounds should be favored.
This intuition fails, though. The problem is the following. Imagine that a biased insti-
tution z with, say, constant-bias βz < 1 and a market-clearing one are simultaneously
active. In principle, since βz < 1, prices at z are lower than at the market-clearing
institution, for a given proportion of buyers and sellers. The actual proportions at z and
the market-clearing institution, though, might be so different as to offset the effect of
the bias. For, since the market-clearing price is an increasing function of the buyers–
sellers ratio rz = nz

mz
, if the ratio at the market-clearing institution, r0, is much smaller

than the one at z, rz then the price at the former, p(r0) might be so much smaller than
the (theoretical) market-clearing price at z, p(rz), that the actual price there, βz · p(rz),
might still be larger than p(r0) even though βz < 1.

This problem, though, might be overcome by taking tighter bounds, taking full
advantage of the fact that m and n are finite. Then, one obtains the following result.

Theorem 3 Assume M1–M3, A1–A4, and D0–D2. Fix the number of buyers n and
sellers m operating on the whole market. Then, there exist β∗(n,m) and β

∗
(n,m)

with β∗(n,m) < 1 < β
∗
(n,m) such that any institution F satisfying β∗(n,m) <

βF (nz,mz) < β
∗
(n,m), βF (nz,mz) �= 1 for all (nz,mz) ∈ S(n,m) is favored and

hence stochastically stable.
In particular, any constant-bias institution F with β∗(n,m) < βF < β

∗
(n,m) is

stochastically stable.

This result shows that potential favored institutions do exist13 for any n,m, and
that the vicinity of the market-clearing institution consists of such favored institutions.
Those non-market-clearing institutions for which β∗(n,m) < βz(nz,mz) < β

∗
(n,m)

are such that they improve one market side relative to the market-clearing institution
for distribution of buyers and sellers. In other words, for any given distribution of
buyers and sellers, such a non-market-clearing institution is favored by one market
side over the market-clearing one.

The last result shows that, in general, there exist non-market-clearing institutions
which do not disappear in the long run. Strikingly, this includes even some very simple
institutions, characterized by a constant (if small) bias.

In order to analyze the efficiency implications of coordinating on a favored non-
market-clearing institution, we have to distinguish between two different notions of
efficiency. On the one hand, one might ask for Pareto efficiency. Because of A4, for
favored institutions in the vicinity of the market-clearing institution, the outcome of
full coordination on at least some favored institutions is not Pareto-inferior to full
coordination on the market-clearing institutions. Coordination on a favored institution

13 That is, there are bias functions such that, if an institution is characterized precisely by that function, it
will be favored. This does not mean that we assume a favored institution always to be actually available in
the market.
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indeed favors those for whom the price bias is advantageous, while the other market
side loses as compared to coordination on a market-clearing institution.

On the other hand, one could use the aggregate (sum) of consumers’ and producers’
surplus as an efficiency measure. Because of the dead-weight-loss associated with
rationing, full coordination on any non-market-clearing institution results in a lower
efficiency than coordination on a market-clearing institution. The expected efficiency
loss due to the presence of stable non-market-clearing institutions depends crucially
on the proportion of time that coordination on each stable institution occurs in the
long run, i.e., on the exact shape of limit invariant distribution. Theorems 2 and 3
characterize for which institutions one can expect full coordination to occur in the
long run, i.e., which states are in the support of the limit invariant distribution. These
results, however, do not identify the exact shape of the limit invariant distribution. In
fact, the limit invariant distribution depends crucially on the properties of the demand
and supply functions and also on the properties of the learning model, in particular
on the specification of revision opportunities and the details of the experimentation
process. Hence, the expected level of inefficiency cannot be characterized within the
general framework of our model.

6 Stable non-market-clearing institutions and the market size

Theorem 2 gives us sufficient conditions for the existence of stochastically stable
institutions other than the market-clearing one. By Theorem 3, favored institutions
always exist for given market size, even if institutions are simply characterized by
a constant-bias parameter. However, one might ask whether it is possible that only
the market-clearing institution is stable if the market becomes very large. It is indeed
possible to construct examples (for particular combinations of demand and supply
functions) where the set of favored institutions degenerates as market size grows;
however, being favored is just a sufficient condition for stochastic stability, and hence,
focusing on this property would not allow us to obtain a satisfactory answer. In this
section, we investigate this question by letting the size of the market grow and by
analyzing stochastic stability directly.

Specifically, we adopt a “replica economy” approach as follows.We fix an economy
with n buyers and m sellers and consider the K -replicated economy formed by K
copies of the initial economy, i.e., with K · n buyers and K ·m sellers. By Theorem 1,
the market-clearing institution remains stochastically stable for all K . We aim to
show that certain non-market-clearing institutions are also stochastically stable for
arbitrarily large K .

We consider slightly stronger versions of our assumptions M1–M3. The following
assumptions exclude that demand and supply functions have trivial parts. Note that, if,
e.g., demand might be zero at a positive price, it would still be zero for any replicated
economy, and hence, the sense inwhich the economy becomes largerwould be unclear.

M1′ The demand function d : R+ → R+ ∪ {+∞} is continuous and strictly decreas-
ing, with d(p) > 0 for all p ≥ 0, and limp→∞ d(p) = 0.

M2′ The supply function s : R+ → R+ is continuous and (weakly) increasing.
Further, s(0) = 0 and s(p) > 0 for all p > 0.
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Note that M1′–M2′ imply M1–M3. The key additional implications of these
assumptions are that limr→+∞ p(r) = +∞ and limr→0 p(r) = 0.14

In order to study large economies, we need to specify an additional assumption on
the dynamics. The reason is that assumptions D1 and D2 are not tailored to the case
of large economies. In particular, consider a dynamics where only one agent revises
every period (which is allowed by assumptions D1 and D2). As K increases, the
speed of learning in this dynamics effectively converges to zero. A more reasonable
dynamics would be, e.g., one ensuring that at least one agent in each replica receives
the opportunity to revise, ensuring that the speed of learning remains constant (or at
least does not vanish) as K increases.15 The following assumption fulfills this role.

D3K For every state ω, the probability that any given set of K buyers i revise (and
nobody else) is strictly positive. Analogously, the probability that any given set
of K sellers revise (and nobody else) is strictly positive.

The following theoremproves existence of (constant-bias) stochastically stable non-
market-clearing institutions even for those cases where the set of favored institutions
degenerates.

Theorem 4 Assume M1′–M2′, A1–A4, D0–D2 and D3K for the dynamics of each
K -replicated economy. Suppose z with constant βz is a favored institution for the
economy with K = 1. The following hold.

(i) If m ≤ n (more buyers than sellers) and β(1) < βz < 1, then there exists a K ∗
such that z is stochastically stable for all K ≥ K ∗.

(ii) If m ≥ n (more sellers than buyers) and 1 < βz < β(1), then there exists a K ∗
such that z is stochastically stable for all K ≥ K ∗.

(iii) If m = n (equal number of buyers and sellers) and β(1) < βz < β(1), then there
exists a K ∗ such that z is stochastically stable for all K ≥ K ∗.

Note that the bounds β(1) < 1 < β(1) are independent of market size (recall
A4). Further, by Theorem 3, the set of constant-bias favored institutions for K = 1
include a non-negligible interval around β = 1. Therefore, the set of stochastically
stable institutions does not in general shrink to the market-clearing institution when
the market size increases, even if the set of favored institutions degenerates. Theo-
rem 4 shows that, under general conditions, there will be biased stochastically stable
institutions even for large market size. That is, there is no “core convergence” result
in this setting. Even though the set of stochastically stable institutions will always
contain the market-clearing institution, other institutions will remain active as the size
of the economy grows.

14 Recall that p(·) is strictly increasing in r . If limr→∞ p(r) �= +∞, it follows that p(r) is bounded above
by some L > 0. Since s(·) is increasing and d(·) is decreasing, it follows from rd(p(r)) = s(p(r)) that r
is bounded above by s(L)/d(L), a contradiction. Analogously, if limr→0 p(r) �= 0, we would obtain that
r is bounded below by some strictly positive s(ε)/d(ε), a contradiction.
15 This problem is well known in the stochastic approximation literature. For instance, Benaïm andWeibull
(2003) assume a fixed relationship between population size and the length of a time interval to ensure that
the expected time between two revision opportunities of a given individual does not grow as the population
size increases.
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The intuition is the following. Suppose that one market side (buyers or sellers) is
overrepresented in the population. Then, this market side has less market power than
the other side. If, for some reason, an institution biased in the favor of this market
side attracts a few sellers and buyers in similar numbers, the overrepresented side will
necessarily prefer the latter institution. Once the new institution becomes active, the
fact that it is favored for K = 1 implies that, if the appropriate proportions of agents
are present in it (for instance, if the numbers of buyers and sellers are multiples of
K ), in practice it will behave as a favored institution in the replicated economy. This
creates positive-probability paths destabilizing the market-clearing institution.

7 Experimental analysis

In this section, we test the theoretical predictions derived from ourmodel. In particular,
we investigate whether traders use stochastically stable institutions independently of
whether they are market clearing or not, i.e., independently of whether they maximize
the sum of the gains from trade. On the other hand, we also check whether institutions
that are not stochastically stable are abandoned in the long run.

Technically, stochastic stability entails a double limit, as time goes to infinity and
as the experimentation rate vanishes. None of these limits can be reproduced in reality.
Hence, it becomes especially important to test whether theoretical predictions based
on stochastic stability are also relevant within reasonable time horizons and in the
presence of naturally noisy human decisions.

Theorem 1 implies the experimental hypothesis that market-clearing institutions
should not be avoided by traders. Further, if no other stochastically stable institution
is available, we obtain the immediate prediction that convergence to full coordination
on the market-clearing institution should be observed. Hence, one of our experimental
treatments below will be such that only one (market clearing) institution is stochasti-
cally stable, and we expect to observe convergence to full coordination.

The translation of theoretical results based on a stochastic-stability analysis to
experimental predictions, however, is not always so immediate. In particular, Theo-
rems 1 and 2 imply that in certain settings, severalmarket institutions are stochastically
stable. This, however, does not literally mean that one should observe coexistence. In
the theoretical limit as ε becomes close to zero, coordination on each institution should
be observed for a long time. After a time, though, experimentation will induce a short
transitional period leading to coordination in a different institution. Hence, most of
time we will observe only one active institution. In the limit as ε → 0, one should
observe coordination on each institution an infinitely long amount of time “before”
a switch occurs. This literal prediction of stochastic stability can of course not be
observed in the laboratory.

A priori, two kinds of results in the laboratory might be seen as compatible with
the existence of multiple stochastically stable institutions. Within the limited time
available in the laboratory, onemight observe that somegroups start to converge toward
coordination on one institution, while other groups start converging toward another
institution. Since several institutions are stochastically stable, strictly speaking this
would be compatible with the theory. Of course, universal convergence toward one of
the institutions would contradict the results.
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The second possible result is to observe actual coexistence. If a setting as ours
is simulated for very small ε > 0, one will indeed observe alternation, with long
time intervals spent on every stochastically stable state. However, if simulations are
made with small but larger values of ε, one will typically observe relatively long
periods of coexistence, as transitions remain relatively slow.That is, for noisy (realistic)
environments, it is reasonable to translate the theoretical multiplicity of stochastically
stable institutions (which is a double-limit prediction) as a prediction of coexistence of
institutions in the short tomediumrun.This is the kindof phenomenon thatwe expected
to see in the laboratory whenever several institutions are stochastically stable. Beyond
this specific prediction, however, we expected to observe qualitatively different results
between situations with only one stochastically stable institutions and situations with
several such institutions. For instance, the theoretical predictionswouldbe refuted ifwe
observed universal convergence toward the market-clearing institution independently
of whether other stochastically stable institutions are available or not.

7.1 The experimental design

In order to test which market institutions survive in the long run, we ran experiments
where buyers and sellers had to choose between three differentmarket institutions. The
focus of the experiment was the choice of the trading platform, and not the trading
behavior at a given platform. Therefore, subjects did not actually conduct trading
interactions on the platforms. Rather, each subject only had to choose between the
feasible platforms, and his payoff was directly determined by this choice, by his type
(buyer or seller), and by the number of other buyers and sellers that opted for the same
market institution. That is, the subjects played a simultaneous move game where,
every period, they chose one of the possible institutions. In particular, they were not
pre-assigned to any institution in the first period. Such a pre-assignment would have
had the advantage of allowing us to experiment with different initial conditions, but
the disadvantage of possibly inducing priming or experimenter demand effects.

We restricted the experiment on a test of the platform choice part of the theory for
two reasons. First, this abstraction allows us to concentrate on the institution selection
process. As already discussed, the stochastic-stability results regarding institution
selection are based on a double limit, which makes testing the predictions particularly
important. On the other hand, any additional “behavioral noise” in the second, trading
stage makes it less likely that traders will be able to coordinate on the market-clearing
institution in the first, platform choice stage. In our view, the most surprising result of
the theoretical analysis is the long-term survival of non-market-clearing institutions.
Hence, we want a design that does not obscure the possibility of full coordination on
the market-clearing institution. While the abstraction from the trading stage limits the
parallelism of the experiment to real market selection, it makes it easier to observe the
benchmark case of coordination on the market-clearing platform.

The buyers’ demand functions and payoffs were derived from a quasilinear utility
function for two goods, u(q0, q) = q0 + v(q) with v a strictly increasing function.
Specifically, for the derivation of the numerical payoffs used in the experiment, we
used v(q) = 5q− 1

2q
2 (for q ∈ [0, 5]).We then replaced q0 = w− pq and usedw = 1
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to obtain the valuation vB(q, p) = 1− pq + 5q − 1
2q

2. In order to obtain payoffs in a
reasonable range for the experiment, we then applied a monotonic transformation to
these values.16 The sellers’ supply and payoffs were derived from the profit function
π(p, q) = pq − 1

8q
2, i.e., sellers were producers with quadratic costs.

One platform (platform A) was market clearing (β = 1), the second one (platform
B) was biased with β = 0.8, and the third one was biased with β = 0.4. The resulting
payoff matrices are shown in “Appendix 2.” As it can be easily checked from the
payoff matrices, the sum of payoffs was maximized when all traders opted for A. But
whenever the distribution of traders over the platforms was such that B was active,
traders of one market side were better off at B than the traders of the same market
side at any of the other platforms. So B was favored and hence stochastically stable.
Examination of the payoff matrices in “Appendix 2” shows that two mutations suffice
for a successful transition away from platform C, while a significantly larger number
of mutations is necessary in order to reach platform C from the states where full
coordination in either of the other platforms obtains. Following standard arguments,
this suffices to establish that platform C is not stochastically stable (and hence not
favored).

We conducted three different treatments. In treatment 1 (T1), subjects had to choose
between platforms A and B. In treatment 2 (T2), traders chose between A and C, and
in treatment 3 (T3), they chose between all three platforms. The theoretical model
predicts that in the long run, subjects will opt for both platforms in T1 and only for
platform A in T2. In T3, A and B should stay active while nobody should opt for C in
the long run.

Each treatment was runwith six groups of seven buyers and seven sellers each. Each
subject played the game for 90 times (“periods”), during which the group composition
did not change. Each subject was member of only one group. In each period, subjects
had to choose between the available platforms within 30 seconds. At the end of each
period, traders were informed about their own payoffs as well as about the distribution
of the group members over the feasible platforms. The instructions (see “Appendix
2”) avoided terms like market platform, buyer/seller, etc. Instead, it used terms like
decision, Type I(II), etc. Subjects had access to the payoff tables for their type (see
“Appendix 2”) but not to those of the opposite type. The experiments were conducted
at the University of Konstanz (Germany). The subjects were undergraduates of all
fields except economics and psychology. A subject’s overall payoff was the sum of
the payoffs earned in all the 90 periods. The exchange rate between the ECU of the
payoff matrices and Euro was 0.7 Eurocent. Overall, the average subject received
11.55 Euros. A session lasted about 70min.

7.2 Experimental results

First, we investigate which platforms are opted for in the long run. Then, we investigate
the individual decision behavior and, in particular, whether the model’s assumptions
on the learning process are supported by the data.

16 The transformation was v′ = 10+ 8(arctan(1.1(v − 9.2)− arctan(−9.02)). Payoffs were then rounded.
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Fig. 1 Evolution of the number of traders in institution A (market clearing) in T1 (averaged across six
sessions). The remaining traders are at institution B (not market clearing, but also stochastically stable)

Fig. 2 Evolution of the number of traders in institution A (market clearing) in T2 (averaged across six
sessions). The remaining traders are at institution C (not stochastically stable)

Figures 1 and 2 present the results of T1 and T2, respectively. The figures plot the
time evolution of the number of traders in the market-clearing institution A, averaged
across the six sessions of each experiment. The remaining traders are in institution B
in the case of T1, and in institution C in the case of T2. The figures show a remarkable
compliance with the theoretical predictions. In T1, both institutions are stochastically
stable, and in the experiment, both remain active over time, with traders allocating
themselves among both. In T2, only the market-clearing institution is stochastically
stable, and indeed, traders quickly learn to coordinate on it and avoid the other insti-
tution.

Figure 3 presents the results of T3, where all three institutions were available.
Since there is no significant difference between buyers and sellers in their choice of
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Fig. 3 Evolution of the number of traders in each institution in T3 (averaged across six sessions)

Table 1 Percentage of choices made during the last 30 periods

Group 1 2 3 4 5 6 Average all
groups

T1-A 61.7 68.1 57.6 58.6 59.2 62.6 61.3

T1-B 38.3 31.9 42.4 41.4 40.8 37.4 38.7

T2-A 100.0 100.0 95.3 100.0 99.8 100.0 99.2

T2-C 0 0 4.7 0 0.2 0 0.8

T3-A 60.7 57.6 54.5 55.3 51.9 54 55.6

T3-B 38.1 42.4 45.5 44.5 48.1 46 44.1

T3-C 1.2 0 0 0.2 0 0 0.3

platform, we do not present the results for buyers and seller separately, but rather
plot the average total number of traders in each of the three institutions. The results
are again in agreement with the theoretical predictions. Institution C, which is not
stochastically stable, is quickly abandoned in favor of the other two, stochastically
stable institutions.

In each of the three treatments, at least half of the traders opt for platform A. When
feasible, however (T1 and T3), platform B also remains active in the long run. But
when available (T2 and T3), platform C becomes inactive during the first 15 rounds
and stays empty or almost empty until the end. In summary, these observations yield:
Result 1 In the long run, traders opt for the stochastically stable platforms A and B,
while platform C is avoided.

This result is not an artifact of taking the average over all groups. Rather, it can
also be observed for each individual group. Table 1 presents, for all individual groups,
the percentage of traders opting for the different feasible platforms during the last 30
periods. For example, in group 2 of T3, 57.6 % of the traders opted for platform A
during the last 30 rounds, 42.4 % for platform B, and 0 % for platform C.
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Table 2 FA denotes the
benchmark payoff of full
coordination on the
market-clearing institution A

Sellers Buyers Sum

FA 18 20 38

T1 17.01 19.62 36.63

T2 17.85 18.97 36.82

T3 16.95 19.53 36.48

In all groups, at least 50% of the traders opted for platform A during the last 30
periods. If available, at least 30% opted for platform B. But less than 5% opted for
platform C, and in 10 out of 12 cases, less than 1 percentage of the traders opted for
C when available.

Remark 4 Full coordination on any trading institution, stochastically stable or not,
is a strict Nash equilibrium of the institution choice game by virtue of Assumption
A3. Hence, this is also true for the games tested in our experimental treatments. In
particular, this implies that such profiles are trembling-hand perfect (and also proper)
and, hence, we cannot obtain finer predictions from the standard game-theoretical
refinement literature for our setting. One could askwhether quantal response equilibria
(QRE) could be used to fit the data. However, QRE for non-negligible noise parameters
(as used in the literature; see McKelvey and Palfrey 1995; Goeree et al. 2005) are
completely mixed profiles, which would not explain convergence to full coordination
in treatment 2. Likewise, one might ask whether observed play can be approximately
described as mixed-strategy Nash equilibria. This interpretation, however, would not
be compatible with the differences in results between treatments 1 and 2. A similar
point concerns asymmetric (pure) equilibria. In T1, observed average play is close to
a split with four agents of each type at institution A, and the rest at institution B. This
profile, however, is not a Nash equilibrium, while profiles with strictly less than four
traders of each type at institution A are (recall Footnote 6).

To evaluate the efficiency loss due to the existence of alternative institutions, we can
take the average payoffs over all 90 periods and all sessions of the different treatments
(see Table 2).

The absolute efficiency level depends crucially on the size of the market and on the
number and the properties of the available institutions. Compared to full coordination
on the market-clearing institution, both types of traders are made worse off by the
availability of other institutions. This inefficiency is due to the fact that learning is not
instantaneous, and some traders stay away from the market-clearing institution at least
in the first periods. The patterns of payoffs in the different treatments are as predicted.
Sellers are best off at T2, while the availability of the stable, non-market-clearing
platform B with β < 1 in T1 and T3 hurts them. Buyers are better off in T1 and
T3 than in T2. Taking the session averages, we find that these results are statistically
significant. With respect to overall efficiency, the sum of payoffs is slightly higher in
T2 than in the other treatments. This difference is not significant. It is, however, much
more pronounced if one takes only the last 30 periods. In this case, the average sums
of the payoffs are 36.87 (T1), 37.69 (T2), and 36.77 (T3). Taking the session averages
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Table 3 Switches and imitation switches

Treatment Switches % Imitation switches %

T1 2315 31.0 1529 65.9

T2 512 6.8 267 52.1

T3 2587 34.6 1624 62.8

The percentage of switches is over the total number of decisions from period 2 onward. The percentage of
imitation switches is over the total number of switches

of the last 30 periods, the sum of payoffs is significantly higher in T2 than in the other
treatments.

Overall, Result 1 and the observations above provide a strong support for the main
predictions of the theoretical model, namely that market-clearing as well as other
stochastically stable institutions will be used in the long run, while other institutions
will be avoided. To further investigate the reasons for this result, we take a closer look
at the individual behavior. In particular, we investigate the behavior of traders who
change the platform from one period to the next (“platform switching”).

In Table 3, we provide the number of switches observed for the different treatments
as absolute numbers and as percentage of the number of total decisions. We also look
at the number of cases where subjects switch to an institution which gave the traders
of their own type the highest possible payoff in the last period, i.e., switches consistent
with our model (fourth column). Since in these cases the subjects act as if they imitate
the most successful last period choice, we call them imitation switches. Table 3 also
provides the percentage of imitation switches over all switches (fifth column).

Table 3 shows that in T1 and T3, subjects switch in about 30–35 % of all possible
cases (the maximum possible number of switches per treatment is 7476, 89 periods
times 14 subjects times 6 groups). In T2, however, subjects switch in only 6.8 % of
all cases. In T1 and T3, 60–65 % of all switches were consistent with our learning
models, while in T2, the respective percentage is 52 %.

Taking the group percentages of imitation switches, we can test the null hypothesis
that these percentages are equally likely to be strictly above 50% as weakly below
50%, i.e., there is no tendency of imitation switching. In all six groups of T1, the
percentage of imitation switching was between 62 and 70%. In T3, these percentages
were between 59 and 65%. Therefore, a binomial test shows that for T1 and T3, the
null hypothesis has to be rejected at any significance level. For T2, we find one group
with 50% imitation switching, and five groups with percentages between 51 and 55%.
In this case, the null hypothesis also has to be rejected at the 5 % level.

This provides evidence consistent with institution switching in favor of institutions
with maximum observed payoffs.17 Overall, we observe a tendency toward imitation
switches in all three treatments, but this tendency is weaker in T2 than in T1 and T3.
This difference is not surprising. Given the near perfect coordination on the unique

17 That is, we obtain evidence in favor of the relevance of observed past performance, which is explicitly
not compatible with purely forward-looking behavior. One natural interpretation of the behavior underlying
the observed phenomena is imitation learning. However, in our context, it is also natural to postulate a form
of reinforcement learning where the payoffs in other institutions are taken as observable bygone payoffs.
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stochastically stable platform A in T2, there were only very few possibilities where an
imitation switch was possible at all. This implies that a smaller percentage of switches
should be imitation switches, since other reasons for a switch (e.g., experimentation)
should be of comparable strength across all treatments. In summary:
Result 2 Individual traders tend to switch to a platform which in the last period gave
the highest payoff to traders of their own type. This tendency is stronger in T1 and T3
than in T2.

To further investigate individual behavior, the learning model must be further spec-
ified. In particular, as mentioned in Sect. 3.3, we hypothesized that the likelihood of a
revision would depend on the observed payoff differences between the own and other
institutions. Hence, we test a learning model where the revision probability is strictly
increasing in the difference between the highest last-period-own-type payoff and the
last-period-own payoff.

Denote by Δ the difference between the highest last-period-own-type payoff and
the last-period-own payoff. For the case of two platforms, s denotes a dummy which
simply takes value 1 if a switch to the other platform occurs. For T3, the definition of
s is more involved, because many more possibilities exist. We define s as a variable
which takes the value 1 if either last period’s platform did not deliver maximal payoffs
and a switch to the last-period-best among the other two platforms occurred, or last
period’s platform did deliver maximal payoffs and a switch to some other platform
occurred. This definition is the natural generalization of the dummy variable for the
two-platform case. The logic is as follows. Consider first the case where Δ > 0, that
is, last period’s platform did not deliver the highest payoffs. In the two-platform case,
the decision consistent with our basic decision rule involves a switch, i.e., s = 1. In
the three-platform case, s = 1 indicates again the choice consistent with the basic
decision rule, which corresponds to a switch to the appropriate platform, but not to
the third one. In the case Δ = 0, the decision consistent with our basic decision rule
in the two-platform case is to stay, i.e., s = 0. In the three-platform case, s = 0
again indicates the choice consistent with the basic decision rule. The main difference
between the dummyvariables in the two- and three-platform cases is that, whenΔ > 0,
with three platforms, a value of s = 0 might indicate either that the agent did stay
in his previous platform (which might correspond to either inertia or a mistake), or
also a switch to a “third platform,” which is neither his previous one nor the one
which delivered highest payoffs. Switches of the last type can obviously not occur
in the two-platform case. But in T3, only 85 decisions (out of 7476) were of this
type.

Since each trader has to decide 89 timeswhether to switch or not, we have a strongly
balanced panel data set. We conduct a probit regression with random effects with s as
dependent variable. The most important independent variable is Δ, and to allow for
nonlinearities, we includeΔ2.We also include the period, a type dummy, and dummies
for the groups. Since all group dummies are insignificant except for one group in T3,
they are not reported in Table 4.

The regressions deliver the following main result.
Result 3 In all three treatments, the switching probability is strictly increasing in
the difference between highest last-period-own-type payoff and the last-period-own
payoff.
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Table 4 Regression results

T1 T2 T3

� 0.0289 0.2601 0.0252

(0.000) (0.000) (0.000)

�2 −0.0004 −0.0087 −0.0004

(0.006) (0.000) (0.000)

Period −0.0038 −0.0251 −0.0050

(0.000) (0.000) (0.000)

Type −0.0484 −0.1412 −0.0276

(0.674) (0.222) (0.735)

Constant −0.6442 −0.9573 −0.5140

(0.000) (0.000) (0.001)

No. obs. 7476 7476 7476

Log likelihood −4239.4064 −11,151.2425 −4496.9168

Chi2 0.0000 0.0000 0.0000

Random effects probit regressions on switches agreeing with the decision rule. Entries in brackets are
p-values

As can be seen from Table 4, in all three treatments, the impact of Δ on s is posi-
tive and highly significant (p-values are shown in brackets below the corresponding
coefficients). The negative coefficient of Δ2 shows that the marginal impact of Δ is
decreasing, but it remains positive for all feasible levels of Δ. That is, in accordance
with our theoretical model, the likelihood of a switch to the last period’s best platform
is indeed increasing in the difference between the highest and the own payoff of the
last period.

The period variable is significantly negative in all three treatments. This implies
that the likelihood of a switch decreases over time. One could interpret this as an
indication that not only the last-period experience determines the switching behavior.
Rather, previous experiences also matter, and therefore in later periods, the last-period
experience has a smaller impact than in earlier periods.

In general, T1 and T3 deliver quite similar results. The size of the coefficients
of T2 differs substantially from those of T1 and T3. This indicates again clear but
unsurprising differences between T2 and the other treatments. In T3, platform C is
essentially disregarded by the traders from the very beginning, so the actual choice
for the traders is between A and B, as in T1. In T2, of course, the choice is between A
and C and convergence to complete coordination on A occurs, which is not observed
in the other treatments.

8 Conclusions

We have presented a model where traders can choose among different trading institu-
tions and asked whether they will learn to coordinate on an institution that guarantees
market clearing. Under a general class of learning dynamics, we find that the market-
clearing institution is always stochastically stable. It is, however, not necessarily the
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only one. We also find non-market-clearing institutions that are stochastically stable
under general conditions, even if the market becomes large. As a result, coordination
on market-clearing institutions will be often observed as the result of learning, but
other institutions might also survive in the long run.

Stochastic stability, however, involves a double limit as time goes to infinity and
the probability of mistakes goes to zero. Neither of these limits corresponds to a
realistic situation. In order to test for the relevance of our theoretical results, we con-
ducted a laboratory experiment on platform selection based on the structure of our
model. The results are remarkably in agreement with the qualitative content of the
theoretical predictions. Traders quickly learn to avoid institutions which are not sto-
chastically stable, while all stochastically stable institutions remain active. Whenever
a stochastically stable institution is confronted with another institution which fails
this criterion, the outcome is a sharp selection result, as predicted by the model, even
though the length of the experiment was relatively short and decision errors were
not influenced in any way. Whenever two institutions are stochastically stable, the
qualitative prediction is that both institutions are equally stable and no quick conver-
gence to either one should be observed for a finite time interval and non-negligible
noise level. This qualitative prediction is readily observed in the data. Hence, we
can conclude that the predictions of our model are also relevant for actual decision-
making. Further, the analysis of individual-level data also supports our behavioral
assumptions and, in particular, the hypothesis that switching probabilities increase
in the payoff difference between other institutions and the one currently used by a
trader.
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Appendix 1: Proofs

Proof (Proof of Lemma 1) Suppose βz(nz,mz) < 1. Then, buyers, but not sellers, are
rationed at institution z. We have that q0S = s(p0) and q

z
S = s(pz). Suppose now that

vS(q0S, p0) ≤ vS(q
z
S, pz). By A1, we must have that p0 ≤ pz .

Then, again by A1, vB(q0B, p0) ≥ vB(d(pz), pz). Since d(pz) > qzB (buyers are
rationed), A2 implies that vB(d(pz), pz) > vB(qzB, pz).

The case βz(nz,mz) > 1 is analogous.
If βz(nz,mz) = 1, no traders are rationed, and the analogous arguments follow

with weak inequalities (A2 does not apply since there is no rationing). �
We now prove some auxiliary lemmata. The first shows that traders in an inactive

institution will always prefer any active institution.

Lemma 2 Suppose that institution z is inactive and institution z′ is active. If traded
quantities are not zero at z′, any trader in z or z′ strictly prefers the outcome of
institution z′ to that of z. If traded quantities are zero at z′, traders in z or z′ are
indifferent between the two institutions.
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Proof Since mz = 0 or nz = 0, traded quantities are zero at z. Since both the bias
βz′(nz′ ,mz′) and the market-clearing price p∗(nz′ ,mz′) are strictly positive, it follows
that pz′(nz′ ,mz′) > 0. If d(pz′(nz′ ,mz′)) > 0, the claim then follows from assumption
A3. If d

(
pz′(nz′ ,mz′)

) = 0, the claim follows from our explicit assumption as part of
A3 that evaluations do not depend on hypothetical prices. �
Lemma 3 Assume A1–A3. Under D0–D2, given any state ω with n0 (ω) ≥ 1 and
m0 (ω) ≥ 1, there exists a finite, positive probability path of the unperturbed dynamics
leading from ω to the state ω0 with n0 (ω0) = n and m0 (ω0) = m.

Proof Consider any institution z �= 0, which is chosen by some traders in state ω. If
nz (ω) = 0 or mz (ω) = 0, by Lemma 2, we can build a positive-probability path to a
new state where no trader is at institution z. Hence, without loss of generality, suppose
that nz = nz (ω) > 0 and mz = mz (ω) > 0.

If βz(nz,mz) �= 1, it follows from Lemma 1 that in state ω, at least one of the two
types of traders strictly prefers the market-clearing institution. Let k be a trader of that
type who is at the non-market-clearing institution z. It might happen that k prefers
a third institution to the market-clearing one, but certainly will not stay in z if given
revision opportunity. Further, by Assumption D1, there is strictly positive probability
that k is the only trader of his type obtaining revision opportunity. Consider the paths
where this event happens, and let k′ denote a trader of the other type (i.e., not of
the same type as k) who, in state ω, is in the same non-market-clearing institution z.
Consider now the event that only k and k′ get revision opportunity.

If this event has positive probability, then (if it occurs) k′ may or may not change
institution, but k will, switching to the market-clearing or another institution. If the
probability of k and k′ being the only revising traders is zero, by Assumption D2, no
agent of the same type as k′ will revise this period, and hence k will change institution
but no other agent will. In any case, the process reaches a state with strictly less traders
at institution z than there were inω, but at least the same traders in the other institutions
(and, in particular, the market-clearing one). If βz(nz,mz) = 1, Lemma 1 yields weak
preferences. The argument above applies again, because by Assumption D0 ties are
broken randomly, i.e., if a trader weakly prefers another institution to his current one,
there is a maybe small but positive probability that he switches away.

Repeating this argument,wewill reach a stateω′ with eithernz(ω′) = 0ormz(ω
′) =

0. From this state, all remaining traders will leave institution z as above (by Lemma 2).
Hence, we reach a state where strictly less institutions are chosen than in ω.

Repeating this procedure, we will reach a state where only two institutions are cho-
sen by traders, and one of them will necessarily be the market-clearing one. Applying
again the same argument (using Lemma 1) shows that we can construct a positive-
probability path to ω0, where 0 is the only active institution. �
Proof (Proof of Proposition 1)The states given in (i) are obviously absorbing because,
in the absence of experimentation, traders will never switch to unobserved institutions.
To see that there are no other absorbing states, suppose that there are traders of the same
type in at least two different institutions. Since necessarily one of those institutions
is yielding (weakly) higher payoffs than the other, and under Assumption D1 there
is positive probability that one of the traders not in that institution is given revision
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opportunity, there is a positive probability transition to a different state, a contradiction.
Finally, if there is only one active institution but the state is not monomorphic, the
result follows from Lemma 2. Part (ii) follows immediately from Lemma 3. �

The remaining proofs rely on the characterization of the set of stochastically stable
states introduced by Kandori et al. (1993) and Young (1993), and on the concept of
radius and coradius developed by Ellison (2000). Given two absorbing sets A and B,
let c(A, B) > 0 (referred to as the transition cost from A to B) denote the minimal
number of mistakes in a positive-probability path starting in an element of A and
leading to an element in B. The following lemma contains all the results on stochastic
stability that we require for the analysis. Its proof is a straightforward application
of Ellison (2000, Theorems 1 and 3) and is analogous to the proof of Lemma 2 in
Alós-Ferrer and Kirchsteiger (2010); hence, we omit it here.

Lemma 4 Let A be an absorbing set and define the Radius of A by

R(A) = min {c(A, B) |B is an absorbing set, B �= A }

and the Coradius of A by

CR(A) = max {c(B, A) |B is an absorbing set, B �= A }

Then:

(i) If R(A) ≥ CR(A), the states in A are stochastically stable.
(ii) If R(A) > CR(A), the only stochastically stable states are those in A.
(iii) If the states in an absorbing set B are stochastically stable and R(A) = c(B, A),

the states in A are also stochastically stable.

Proof (Proof of Theorem 1) We have to show the stochastic stability of the state ω0.
If there is any other market-clearing institution, the conclusion follows by renaming.
First, notice that, by Lemma 2, no monomorphic state can be left with less than
two mutations unless the traded quantity is zero. Since traded quantities at a market-
clearing institution are never zero, it follows that R({ω0}) ≥ 2.

Consider any state in any absorbing set other than {ω0}.Notice that twomutations (to
themarket-clearing institution) suffice to reach a stateωwith n0 (ω) ≥ 1 andm0 (ω) ≥
1. By Lemma 3, there is a positive-probability path of the unperturbed dynamics (i.e.,
requiring no further mutations), leading to ω0. This shows that CR({ω0}) = 2 (the
equality follows because two mutations are required to leave any other monomorphic
state). The result follows from Lemma 4(i). �
Proof (Proof of Theorem 2) Let ωz denote the monomorphic state corresponding to
coordination on institution z.We know fromTheorem 1 thatω0 is stochastically stable.
By definition of a favored institution, we see that if exactly twomutations to institution
z occur at state ω0, we reach a state where at least one type of traders strictly prefer
that institution. Analogously to the proof of Lemma 3 (through repeated application
of Definition 3), from this state, there exists a positive-probability path involving no
further mutations which leads to state ωz . From the proof of Theorem 1, we already
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know that it is possible to make the opposite transition with exactly twomutations (but
no less). Thus, we obtain that c({ω0} , {ωz}) = 2 = R({ωz}), and the result follows
from Lemma 4(iii). �
Proof (Proof of Theorem 3) For any given n,m, let

R(n,m) =
{a
b

|a = 1, . . . , n, and b = 1, . . . ,m
}

be the set of feasible buyers–sellers ratios and define

β(n,m) = max
r∈R(n,m)

β(r) and β(n,m) = min
r∈R(n,m)

β(r).

Note that for any given number of buyers and sellers, there exists only a finite number
of values r can take. Hence, by A4, β(n,m) < 1 < β(n,m). For any given n,m,
define T (n,m) as the set of all pairs (r0, rz) such that r0 = n0

m0
and rz = nz

mz
with

n0, nz ∈ {1, . . . , n} andm0,mz ∈ {1, . . . ,m} such that n0+nz = n andm0+mz = m.
In other words, T (n,m) is the set of all pairs of buyer–seller ratios which are feasible
when exactly two institutions are simultaneously active. Finally, define

β∗(n,m) = max

{
β(n,m),max

{
p(r0)

p(rz)
|(r0, rz) ∈ T (n,m) and r0 < rz

}}

β
∗
(n,m) = min

{
β(n,m),min

{
p(r0)

p(rz)
|(r0, rz) ∈ T (n,m) and r0 > rz

}}

Notice that β∗(n,m) (and analogously β
∗
(n,m)) is well defined because T (n,m) is

finite and r0 < rz implies p(r0)
p(rz)

< 1. Clearly, β(n,m) ≤ β∗(n,m) < 1 < β
∗
(n,m) ≤

β(n,m).
Consider an institution F such that β∗(n,m) < βF (nz,mz) < β

∗
(n,m) for all

feasible nz,mz . We prove that F is favored.
We want to show that, whenever vS

(
q0S, p0

) ≥ vS
(
qF
S , pF

)
, then vB

(
q0B, p0

)
<

vB
(
qF
B , pF

)
. Let βF = βF (nz,mz) be the realized bias at institution F . Suppose

βF < 1. Then, buyers, but not sellers, are rationed at F . We have that q0S = s(p0) and
qF
S = s(pF ). Suppose now that vS(q0S, p0) ≥ vS(qF

S , pF ). By A1, and we must have
that p0 ≥ pF .

Suppose that r0 ≥ rF . Then, p0 = p(r0) ≥ p(rF ) and, by A1, vB(q0B, p0) =
VB(1, r0) ≤ VB(1, rF ). By A4, VB(1, rF ) < VB(βF , rF ) = vB

(
qF
B , pF

)
and the

claim follows.
Suppose now that r0 < rF . Then, p0 = p(r0) < p(rF ). If, as assumed,

vS
(
q0S, p0

) ≥ vS
(
qF
S , pF

)
, then p0 ≥ pF = βF · p(rF ) by A1. It follows that

βF ≤ p(r0)
p(rF )

, a contradiction with βF > β∗(n,m). Hence, vS
(
q0S, p0

)
< vS

(
qF
S , pF

)
.

The case βF > 1 is analogous. �
The following Lemma is used in the proof of Theorem 4.
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Lemma 5 Assume A1 and A4. If β(1) < βB < 1 < βS < β(1), then

(i) if m ≤ n (more buyers than sellers), in a state where an equal, strictly positive
number of sellers and buyers are at an institution z with constant βz = βB and
the remaining traders are at a market-clearing institution (and there are traders
of both types in the latter), buyers strictly prefer z;

(ii) if m ≥ n (more sellers than buyers), in a state where an equal, strictly positive
number of sellers and buyers are at an institution z with constant βz = βS and
the remaining traders are at a market-clearing institution (and there are traders
of both types in the latter), sellers strictly prefer z.

Proof We will show part (i). Part (ii) is analogous. Let 0 < 
 < max(m, n) be the
number of sellers and buyers at the alternative institution z. Since m ≤ n, we have
that m − 
 ≤ n − 
 and hence

r = n − 


m − 

≥ 1

That is, there are (weakly) more buyers than sellers at the market-clearing institution.
By A4, since β(1) < βB < 1,

VB(βB, 1) > VB(1, 1)

and, by A1,

VB(1, 1) = vB
(
qzB(1, 1), p(1)

) ≥ vB (d(p(r)), p(r))

because qzB(1, 1) = d(p(1)) and p(1) ≤ p(r) since r ≥ 1 and p is increasing in r .
Hence,

VB(βB, 1) > vB (d(p(r)), p(r))

which proves the claim, because vB (d(p(r)), p(r)) is the buyers’ payoff at themarket-
clearing institution, and VB(βB, 1) is the payoff of the buyers at the non-market-
clearing institution with βz = βB . �
Proof (Proof of Theorem 4) We will show part (i). Part (ii) is analogous, and part
(iii) follows from (i) and (ii). Let ω1 denote the monomorphic state corresponding to
coordination on the buyers’ institution z. By hypothesis, z is a favored institution for
the economy with K = 1. Further, we know from Theorem 1 that ω0 is stochastically
stable. In order to show stochastic stability of ω1 for large K , by Lemma 4(iii), it is
enough to show that two mutations at ω0 from the market-clearing institution 0 to z
suffice for a transition.

Let a buyer and a seller mutate from 0 to z. Then, rz = 1 and r0 = Kn−1
Km−1 ≥ 1.

By Lemma 5(i), the mutant buyer is strictly better off. By D3K , let K buyers revise,
including the mutant, and follow him to z (so exactly K − 1 buyers switch). Now,
rz = K

1 and r0 = (n−1)K
Km−1 .
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Since limr→∞ p(r) = +∞ under M1′–M2′, rz → ∞ as K → ∞, and r0 → n−1
m

(finite), even though βz < 1 it follows that there exists K ∗ such that, for all K ≥ K ∗,
pz = βz p∗(rz) > p∗(r0) = p0.

Sellers are not rationed at 0 (by definition), and they are not rationed at z either since
βz < 1. Hence, by A1, sellers are strictly better off at z since they face a higher price.
By D3K , there is positive probability that K sellers, including the lone seller already
in z, revise and move to z from 0, while no other trader receives revision opportunity.
In the new state, we have rz = K

K = 1 and r0 = (n−1)K
(m−1)K = (n−1)

(m−1) . By Lemma 5(i),
VB(βz, rz) > VB(1, r0) and buyers at z are strictly better off. ByD3K , there is positive
probability that K buyers from 0 revise and follow them to z.

We know that the market institution z is favored for the economy with K = 1. That
means that one market side is better off at z for all prices resulting from population
proportions which are feasible in the economy with K = 1 (recall the construction of
the set T (m, n) in the proof of Theorem 3). In the state we have just reached, we have
rz = 2K

K = 2 and r0 = (n−2)K
(m−1)K = n−2

m−1 , which are feasible population proportions in
the economy with K = 1.

We conclude that one market side is better off at z. Let K traders of the appropriate
market side switch (using D3K ). The new population distribution is always a multiple
of K for each trader type and each institution; hence, we can apply the fact that z
is favored in the economy with K = 1 again. Proceeding iteratively, eventually we
reach a state where a complete market side is at institution z. By A3, we can complete
the transition by moving groups of K traders of the other market side to z until the
market-clearing institution becomes empty. �

Appendix 2: Experimental instructions and payoff matrices

The instructions and the control questionnaire below are translated from German into
English as literally as possible. These instructions were distributed to Type I traders
(i.e., sellers) of treatment 3 (choice between three platforms). The instructions for
Type II traders (buyers) were symmetric (of course with the appropriate payoffs in the
examples). The instructions for T1 and T2 were similar, with the only difference that
all the references to choice C were deleted.

Each participant was provided with the appropriate payoff tables for the institutions
used in the experiment. Table 5 displays the payoffs obtained by buyers and sellers
at each of the three institutions used in the experiments. Within each table, each row
corresponds to the number n of buyers present at the institution, each column to the
number m of sellers.
Instructions: Type I

The experiment you are about to participate in is part of a research project on
decision behavior. The instructions are simple, and if you read them carefully and
make appropriate decisions, you can earn a considerable amount of money.

The revenues made during the experiment are counted in ECU (“experimental
currency units”). After the end of the experiment all the revenues you made during the
experiment will be added up and paid to you in cash. For every ECU you will receive
0.7 Eurocent.
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Table 5 Experimental payoff tables

Buyers Sellers

n\m 0 1 2 3 4 5 6 7 n\m 1 2 3 4 5 6 7

Institution A: Market clearing

0 10 10 10 10 10 10 10

1 10 20 30 31 32 32 32 32 1 18 12 11 11 10 10 10

2 10 12 20 28 30 31 31 32 2 32 18 14 12 12 11 11

3 10 11 13 20 27 29 30 31 3 47 25 18 15 13 12 12

4 10 11 12 14 20 26 28 30 4 60 32 23 18 16 14 13

5 10 10 11 13 15 20 25 27 5 72 40 27 21 18 16 15

6 10 10 11 12 13 16 20 24 6 82 47 32 25 21 18 16

7 10 10 11 11 12 14 16 20 7 91 54 37 29 23 20 18

Institution B: Stochastically stable but not market clearing (β = 0.8)

0 10 10 10 10 10 10 10

1 10 23 30 31 32 32 32 32 1 15 12 11 10 10 10 10

2 10 13 23 29 30 31 31 31 2 24 15 13 12 11 11 11

3 10 11 15 23 28 29 30 31 3 34 20 15 13 12 12 11

4 10 11 13 16 23 27 29 30 4 42 24 18 15 14 13 12

5 10 11 12 14 18 23 26 28 5 50 29 21 17 15 14 13

6 10 10 11 13 15 18 23 26 6 56 34 24 20 17 15 14

7 10 10 11 12 13 16 19 23 7 62 38 27 22 19 17 15

Institution C: Not stochastically stable (β = 0.4)

0 10 10 10 10 10 10 10

1 10 12 14 15 16 17 17 17 1 11 10 10 10 10 10 10

2 10 11 12 13 14 15 15 16 2 14 11 11 10 10 10 10

3 10 11 12 12 13 14 14 14 3 16 12 11 11 11 10 10

4 10 11 11 12 12 13 13 14 4 18 14 12 11 11 11 11

5 10 11 11 11 12 13 13 13 5 20 15 13 12 11 11 11

6 10 10 11 11 12 12 12 13 6 22 16 14 12 12 11 11

7 10 10 11 11 11 12 12 12 7 23 17 14 13 12 12 11

n stands for the number of buyers, m for the number of sellers at the institution. The actual tables used in
the experiment were less condensed. In particular, n and m were replaced with explicit descriptions of the
form “Number of participants of Type I/II who choose A/B/C” in front of the rows or above the columns,
as appropriate. The tables are permuted so that for every participant, the number of participants of his or
her type varied across rows

Any communication between the participants is strictly forbidden.
In every round of the experiment you have to choose between three different options,

A, B, or C. To do so you click on the appropriate button for decision A, B, or C. Then
you confirm your decision by clicking on the OK button. In each round you have half
a minute to make this decision.

In this experiment there are two types of participants, participants of Type I and
participants of Type II. You are of Type I. All in all, there are 7 participants of Type
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I and 7 participants of Type II within the group relevant for you. You will not be
informed about the identity of the other group members, and the other group members
will not be informed about your identity.

The revenues youmake in a round depend on the number of other groupmembers of
each type whomake the same decision as you. Assume that you havemade decision A,
three other Type I participants have made the same decision, and 5 Type II participants
have chosen A, too. In this case 4 Type I participants and 5 Type II participants have
chosen A. As you can see from the attached revenue matrix, your revenues are 21
ECU in this case.

Another example: You have chosen B, one other Type I participant has made the
same decision, and 3 Type II participants have chosen B, too. In this case your revenues
are 20 ECU.

After all members of your group have made a decision, you will be informed about
the number of participants of each type that have chosen A, B, and C. You will also
be informed about their revenues, and about the sum of revenues you have earned so
far in the whole experiment.

After that, a new round will start, in which you will have to decide between A, B,
and C, again. Overall there will be 90 rounds.

Control Questionnaire

1. Suppose that you have made decision B, 2 other Type I participants have made
the same decision, and 2 Type II participants have also chosen B. What are your
revenues?
Suppose that 2 Type I participants and 3 Type II participants have chosen A. What
are the revenues of those Type I participants who have chosen A?
Suppose the remaining 2 Type I participants and the remaining 2 Type II partici-
pants have chosen C. What are the revenues of those Type I participants who have
chosen C?

2. Suppose that you have made decision C, 3 other Type I participants have made
the same decision, and 2 Type II participants have also chosen C. What are your
revenues?
Suppose that 1 Type I participant and 2 Type II participants have chosen B. What
are the revenues of the Type I participant who has chosen B?
Suppose the remaining 2 Type I participants and the remaining 3 Type II partici-
pants have chosen A. What are the revenues of those Type I participants who have
chosen A?
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