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We study competition among market designers who create new trading platforms, when boundedly
rational traders learn to select among them. We ask whether �Walrasian� platforms, leading to market-
clearing trading outcomes, will dominate the market in the long run. If several market designers
compete, we find that traders learn to select non-market clearing platforms with prices systematically
above the market-clearing level, provided at least one such platform is introduced by a market
designer. This in turn leads market designers to introduce non-market clearing platforms. Hence
platform competition induces non-competitive market outcomes.

Markets are not only characterised by demand and supply but also by the rules that
govern the trading process. The �institutional� framework determines the set of market
participants, their available options and the matching and information structure of the
market. In reality we observe a huge variety of different market frameworks, even for
trading the very same good. Real estate, for example, is traded at auctions as well as by
personal bargaining. There is also a large amount of evidence that these characteristics
are crucial for the resulting trading outcome and for the realised prices. Since the
impact of the trading rules on market outcomes is difficult to investigate with time-
series of real-life market data, for a more detailed discussion see Friedman (1993),
empirical evidence mainly relies on laboratory experiments, for an overview of the
evidence see, e.g., Plott (1982) and Holt (1995); in the context of financial markets see
also Friedman (1993). While double auctions typically tend to generate market clearing
prices and quantities, posted-offer markets establish prices that tend to be above the
market-clearing level, whereas the prices on posted-bid markets seem to be below the
Walrasian level (Plott and Smith, 1978). As a consequence, some gains of trade are not
realised on these trading platforms and inefficiencies occur due to the design of the
trading platform. In a similar way, Dutch or first-price auctions are notorious for
inducing overbidding and creating inefficient allocations compared to second-price
formats (Kagel, 1995). In a field study, Roth and Ockenfels (2002) show that fixed
ending-rules (�hard-close�) in online auctions lead to late bidding (�sniping�); see also
Ockenfels and Roth (2006). A laboratory experiment by Ariely et al. (2005) confirmed
this finding, and also showed that fixed ending-rules lead to lower revenues for the
seller (and less efficient allocations) than automatic extensions of the auction (�soft
ending�). All these studies suggest that socially desirable features of market outcomes
such as unbiased (market-clearing) prices and efficient allocations are rather sensitive
to details of the respective market institution. Moreover, there seems to be a trade-off
between efficiency and a price bias in favour of one of the market sides.
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A remarkable example for the coexistence of a variety of trading institutions is
provided by Business to Business (B2B) trading platforms, for a comprehensive analysis
see, e.g., Lucking-Reiley and Spulber (2001). Recent decades have seen a proliferation
of B2B platforms, and despite the burst of the internet bubble there were more than
1000 B2B marketplaces active in Europe in 2003 (European Commission, 2003). While
most of the public and scientific attention is devoted to e-marketplaces targeting
consumers (like e-bay or Yahoo), about 95% of the e-commerce is actually B2B
(UNCTAD, 2002). In 2004 B2B had an estimated volume of $1 trillion (The Economist,
2004). In contrast with Business to Consumers or Consumer to Consumer platforms,
large quantities of relatively standardised products are traded at B2B exchanges. Agents
seem to act either as buyers or as sellers on these platforms but not as both (European
Commission, 2003). B2B e-commerce is organised in three different ways. The pre-
dominant modus in the early days of e-commerce were platforms opened by buyers or
sellers (or respective umbrella organisations). An example is MetalSite, a platform
organised by steel producers that suspended operations in 2001. Currently, B2B
e-commerce is typically organised either as e-procurement1 (where sellers use stan-
dardised software and exchange opportunities offered by platforms such as Ariba or
CommerceOne to design and allocate procurement contracts) or via institutions
operated by a third party (this holds, e.g., for CheMatch – a trade platform for chemical
products – or for a large part of the product portfolio offered at EnronOnline – a multi-
commodity exchange run by Enron until 2002). Of all firms active on B2B platforms,
about one third operates on such platforms run by third parties (European Commis-
sion, 2003). Both e-procurement software and market designs of third parties show a
variety of institutional arrangements. EnronOnline, for instance, was organised as a
posted offer market while competing platforms such as AltraEnergy (or on the chemical
sector CheMatch) are exchange platforms that work like double auctions. The software
solutions offered by Ariba and CommerceOne include various institutional arrange-
ments such as Dutch auctions or proxy-bidding (with hard and soft ending rules).2

Platform designs seem to exist with different propensities to generate market clearing
outcomes in B2B e-commerce(see the experimental literature cited above).

Given the variety of different market institutions, and the variety of their efficiency
properties, one wonders which type(s) of trading institutions will be observed in the
long run. In particular, our article investigates whether institutions promoting efficient,
market clearing outcomes will dominate less efficient trading platforms in the long run.
To answer this question, we are led to investigate the evolution of market institutions. It
is useful to distinguish between two aspects of this evolution, namely the selection
between existing institutions by the traders and the emergence of new institutions. New
market institutions can either be introduced on purpose by a market designer, or be
the (unintended) by-product of the actions of the traders. In what follows we focus on

1 For a recent discussion of the adoption of e-procurement in B2B and an overview of market designs see
Davila et al. (2003).

2 Interestingly, CommerceOne applied for Chapter 11 bankruptcy in 2004 and was bought out later. In
general, entry and exit are still a frequent phenomenon in the market for B2B platforms, suggesting that this
industry is still at a relatively early stage of development. However, business analysts identify a development
from the creation of new platforms (the common business model in the 1990s) to buy-outs, which indicates
some degree of maturity (Keys, 2002).
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market platforms introduced on purpose.3 If a trading platform is introduced by a
market designer who demands user fees, the design of a new platform by the designer
and the selection among existing ones by the traders are closely interlinked. The
market designer will try to introduce a new platform with characteristics that attract
many traders. This attractiveness in turn determines the long-run survival of the plat-
form. In this article we analyse this interplay between the creation of new and the
selection among existing trading platforms and we investigate the characteristics of the
resulting platforms with respect to their ability to achieve market clearing outcomes.

Trading platforms are created by profit-maximising, risk-neutral market designers.
The designers compete with each other through platform designs. Each designer
chooses a trading fee that he demands from the traders for the use of his platform. To
capture the trade-off between efficiency and a price bias for one market side that has
been observed in laboratory studies (see above), we allow designers to choose platform
designs with systematic price biases, above or below the market clearing price. Hence,
through the trading fee, each designer decides upon his share of the surplus created
through trade at his platform. But he can also favour one type of trader with the
introduction of a price bias. Any bias reduces the surplus generated at the platform
(and thereby ceteris paribus the revenue for the designer) but may also make it more
attractive for the favoured type of trader, which in turn may enhance the platform’s
survival probability.

To analyse this trade-off, we model competition between two market designers and
compare the results of this setting with the benchmark case of a monopolistic market
designer. After the platforms have been designed, traders decide which platform they
want to be active on (for the monopolistic case, there is of course no real choice –
traders just trade on the only existing platform). The role of a trader (buyer or seller) is
exogenously given. Sellers are assumed to be firms with a constant returns to scale
production technology.4 Buyers are characterised by their demand functions, and
might be either consumers or other firms. For given platform characteristics, the
selection by traders gives rise to a coordination game. If each trader opts for a
particular platform no trader has an incentive to deviate from this platform – inde-
pendently of the design alternatives offered by the competing platform. If traders were
fully rational, we would have established a standard two stage game (Stage 1: Market
Design; Stage 2: Traders� platform choice) with (network) externalities in the Stage
2-subgame. Such a game typically exhibits a multiplicity of (subgame perfect) equi-
libria. As in the battle of sexes, coordination of all traders on each platform is clearly an
equilibrium of the 2nd stage, next to a mixed strategy equilibrium where traders are
indifferent between platforms. To select among these equilibria, we drop the
assumption of fully rational traders and instead assume that traders are boundedly
rational but may learn to coordinate on a particular platform. Following the game-
theoretic learning literature (Young, 1993; Kandori et al., 1993; Ellison, 2000), we use a
Markovian model to analyse the platform choice of the traders. We assume that the
traders� behaviour depends on the market outcomes generated by the different
platforms and thereby on the characteristics of all feasible platforms. We are interested

3 For an analysis of markets as a by-product of traders� actions, see Kirchsteiger et al. (2005).
4 In Appendix B we investigate the robustness of our results with respect to decreasing returns to scale.
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in the long-term properties of this learning process, i.e. in its (limit) invariant distri-
bution. This invariant distribution in turn determines the payoffs of the market
designers. Hence, we establish a link between designer revenues and the characteristics
of all feasible platforms.

For the case of competing platforms we find that, in the long run, traders will always
coordinate on a platform with prices above the market clearing level, provided that
such a platform has been introduced by at least one designer. This forces designers to
introduce platforms that are not market clearing but that have a price bias in favour of
the sellers. On the other hand we find that a monopolistic designer will always intro-
duce a market-clearing platform. Therefore competition at the designers� level turns
out to be detrimental for a competitive outcome at the traders� level. We regard this
result as paradoxical.

The present article is related to three strands of the literature. First, since we investigate
the role of trading platforms with exogenously given buyers and sellers, our article is to
some extent related to the two-sided markets literature; see Rochet and Tirole (2006) for
an overview. This literature is based on the assumption of network externalities. It
analyses the impact of these externalities and of platform competition on the structure of
the fees demanded by the market designers (Armstrong, 2006; Belleflamme and
Toulemonde, 2004; Caillaud and Julien, 2003; Rochet and Tirole, 2003). In contrast, we
want to investigate whether traders learn to coordinate on market-clearing trading
platforms, if such platforms are feasible. Therefore we explicitly model the learning
behaviour of the traders, whereas the two-sided market literature assumes rational
traders. Further, we ask whether platform competition induces market designers to
establish platforms with characteristics that achieve market-clearing outcomes. Conse-
quently, we abstract from any network externalities that are not internalised by the price
at which trade takes place. In our model trading fees demanded by the market designers
are neutral insofar as the market outcome is only influenced by the total fee imposed on
both market sides but not on the distribution of the fees on the two market sides.5

Second, our article is also related to the literature on competition between exo-
genously given trading institutions. Ellison and Fudenberg (2003) and Ellison et al.
(2004) analyse the circumstances under which different market institutions can coexist
in equilibrium. Due to their different research questions these papers do not allow for
institutions with systematic price biases. Kugler et al. (2006) investigate the case of
centralised versus decentralised trading institutions. All of these papers rely on the
assumption of rational traders and do not allow for learning. In terms of traders�
behaviour, the learning model of Gerber and Bettzüge (2007) is relatively close to our
article. But since they focus on the possibility of multiplicity of active trading platforms,
they consider neither non-market-clearing platforms nor market designers. The paper
most closely related to the one at hand is that of Al�os-Ferrer and Kirchsteiger (2008),
which also analyses the learning behaviour of traders who face the choice between
different, not necessarily market-clearing platforms. That paper, however, deals only
with the selection among different, exogenously given institutions and does not con-
sider competition between market designers.

5 Rochet and Tirole (2006) define two-sided markets by the non-neutrality of the fees. In their terminology
we model a one-sided market.

218 [ M A R C HT H E E C O N O M I C J O U R N A L

� The Author(s). Journal compilation � Royal Economic Society 2009



In our model, rational market designers are confronted with boundedly rational,
learning traders.6 Hence, our article belongs to a small but growing literature that we
call �asymmetric rationality�, where fully rational firms or otherwise sophisticated agents
are confronted with a population of boundedly rational ones. The basic motivation is
that consumers and small traders do not have the resources to obtain all the relevant
information and fully optimise their behaviour, often relying on behavioural rules of
thumb instead. However, large firms, market designers, etc. can be taken as compar-
atively sophisticated. Schlag (2004), Gabaix and Laibson (2006), Hopkins (2007) and
Spiegler (2006) apply this approach to the analysis of industries facing boundedly
rational consumers. See Ellison (2006) for an overview of this literature.

The article is organised as follows. Section 1 presents the basic model. Section 2
discusses the traders� platform choice of the traders. Section 3 analyses the design of
the platform. Section 4 concludes. All proofs are in Appendix A. In Appendix B we
analyse the robustness of our results with respect to boundedly rational designers and
with respect to decreasing returns to scale in production.

1. The Model

We study the trade of a homogenous good at different market platforms, which are set
up by profit-maximising market designers. For simplicity, we restrict our attention to
two competing market designers (referred to as competitive market design). As a
benchmark, we also analyse the case where only one market designer can set up a
trading platform (referred to as monopolistic market design). In this Section, we
introduce the trading rules that are at the market designer’s disposal and analyse trade
and profits for a given choice of trading rules by the designers and a given platform
choice by buyers and sellers.

1.1. Market Platforms� Design

Before trade takes place, market designers decide upon the set of trading rules under
which their respective platforms operate, and the trading fees they demand from the
traders. We do not aim at a complete description of the different sets of rules the
designers can introduce. Rather, we characterise them by their ability to establish
market clearing. Market designers may choose to design platforms such that market
clearing is guaranteed, or they may pick platforms where the price is systematically
biased above or below the market clearing price. Denote by p�i the market-clearing
price if at least one seller and at least one buyer choose this platform and by bi > 0 the
bias of platform i ¼ 1,2. The actual price at which trade takes place at platform i is then
given by pi ¼ bip

�
i . If the actual price is not market clearing (i.e. bi 6¼ 1), the quantity

traded is determined by the short market side, and traders on the long market side are
rationed. Sellers are rationed equally if bi > 1. We do not specify any rationing rule for
the buyers.

The common set of feasible biases is assumed to be a finite, regular grid B ¼
fbmin,bmin þd, . . .,1, . . .bmax �d, bmaxg, where 0 < bmin < 1 < bmax and d is the step of

6 In Appendix B we show the robustness of our results with respect to learning designers.
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the grid. To understand why institutions with different price biases are feasible for the
designers, recall the experimental and empirical results mentioned in the introduc-
tion. In our framework posted offer markets or first price auctions are characterised by
b > 1, posted bid markets or proxy-auctions with �hard-close� by a b < 1, while double
auctions can be represented by b ¼ 1. We refer to the platform with b ¼ 1 as the
market-clearing platform and we assume that such a platform is always feasible. jBj
denotes the number of feasible biases.

After the platforms are set up, traders will use their observations and experience to
learn eventually which platform to use. Formally, we analyse a learning process with an
infinite number of trading rounds. The designers� long-run payoffs are the expected
per round charges. Furthermore, we assume that the charges of designer i are a fixed
share of the revenue generated by trade on i �s platform.7 Denote by fi the trading fee
demanded by designer i, and by ERi the expected per round revenue generated on
platform i. Then market designer i �s profits are given by pD,i ¼ fiER i. The set of feasible
fees is the same for both designers. For simplicity we assume that it is given by a finite,
regular grid F ¼ ffmin, fminþc,. . .fmax �c, fmaxg, where 0 < fmin < fmax < 1.8 jF j denotes
the number of feasible fees.

The trading fee can be imposed on the sellers� side, on the buyers� side, or
divided between both sides. However, the market-clearing price, the realised price at
which trade is conducted and the traded quantities depend only on the total fee
and not on the distribution of the fee over the two market sides. Buyers at platform
i pay pi for each unit, market designers receive fi pi and sellers ultimately receive
(1 � fi)pi. Hence, we do not need to specify on which market side the fee is
imposed.

The characteristics of a platform i are denoted by si ¼ (bi,fi), and the set of feasible
characteristics by S ¼ B � F.

1.2. Traders

The good is supplied by a finite set M of at least two profit-maximising firms (sellers)
that use the same constant returns to scale technology with marginal costs of c > 0.9

When deciding upon his supply, a seller takes into account the trading fee of the
platform at which he operates. Hence, sellers supply a strictly positive but finite
quantity if and only if the price net of trading fee is equal to c.

As shown later, the assumption of a constant returns to scale technology allows us to
derive results for a very general class of learning models. That is, by focusing on this
case, we obtain results that are robust to the details of the learning process. In
Appendix B.2. we illustrate that for strictly decreasing returns to scale the results
depend on the details of the learning model. In particular, the results of the constant

7 Our results would not change if we assume quantity-dependent charges instead of revenue-dependent
charges.

8 The assumption that the fees are strictly positive can be justified by (unmodelled) setup costs for the
market designers.

9 The assumption of identical sellers might seem restrictive at the first sight. Within our framework, firms
without access to the lowest cost technology would face zero market demand. Hence, our assumptions only
rule out the case where exactly one firm has access to the lowest-cost technology.
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returns to scale case can be replicated also for strictly decreasing returns to scale, but
not for the whole class of learning models we analyse here.

The good is demanded by a finite set N of buyers with jN j > 1. Each buyer n 2 N is
endowed with a demand function dn(p) which might be different for different buyers.
All the demand functions are assumed to be strictly decreasing in p. Furthermore,
0 < dn(p) < 1 for all p, n. To avoid discontinuities in the designers� profit functions we
also assume that limp!1 pdn(p) ¼ 0 for all n 2 N.10

We call a platform active if both sellers and buyers are present and positive quantities
are traded, and inactive if not. The presence of both types of traders does not ensure
that the platform is active. To see this, note that due to the assumption of a constant
returns to scale technology the market-clearing price of a platform i where both sellers
and buyers are present is given by p�i ðsiÞ ¼ c=ð1� fiÞ. The realised price at which trade
is conducted on platform i is then

piðsiÞ ¼ bi

c

1� fi
: ð1Þ

If bi < 1, the net price received by the sellers is below the marginal costs. Hence, supply
is zero, and platform i is inactive despite both types of traders being present on plat-
form i.

Denote by Ni the set of buyers who choose platform i, and by Mi the set of sellers who
choose platform i. Platform i is active if and only if jNij > 0, jMij > 0, and bi � 1. Let

DNi
ðpÞ ¼

X
n2Ni

dn pð Þ ð2Þ

denote the total demand at platform i. The quantities traded by a buyer n 2 Ni,
qn,i(Ni,Mi,si), and by a seller m 2 Mi, qm,i(Ni, Mi, si), are given by

qn;iðNi ;Mi ; siÞ ¼ dn bi

c

1� fi

� �
if i is active;

0 otherwise,

8<
: ð3Þ

qm;iðNi ;Mi ; siÞ ¼
1

jMi j
DNi

bi

c

1� fi

� �
if i is active,

0 otherwise.

8<
: ð4Þ

In the single-designer case, traders cannot choose between different platforms but
have to use platform i. Hence, Ni ¼ N, Mi ¼ M and the market outcome is only
determined by the platform characteristics si.

If there is competition between market designers, trade can take place at different
platforms and the outcome depends also on the way traders learn which platform to
use. This learning process is driven by the market outcomes of both platforms (see
above) and by the individual evaluations of these outcomes. For the latter part note
that if buyers trade strictly positive amounts, they are strictly better off than without
trade. Hence, inactive platforms are worse for buyers than active ones. Furthermore,

10 Our results do not depend on the assumption that the value of demand goes to zero when the price
approaches infinity. However, the presentation is simplified by this assumption.
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whenever a buyer trades a strictly positive quantity, he is not rationed at all. It is thus
natural to assume that buyers� evaluation of active platforms is monotonically
decreasing in the price. Therefore, buyers� evaluation of platform i could be repre-
sented e.g. by11

pn;iðsiÞ ¼
1

pi
¼ 1� fi

bi c
if i is active,

0 otherwise.

8<
: ð5Þ

If both platforms i and j are active (i.e. positive amounts are traded),

pðsiÞ < pðsjÞ () pn;iðsiÞ > pn;jðsjÞ: ð6Þ

This implies in particular that if bi ¼ bj ¼ 1 and fi < fj, then pn,i(si) > pn,j(sj).
The sellers� evaluations of the platforms are determined by the respective profits. An

inactive platform gives of course zero profits. Furthermore, whenever bi > 1, sellers
trading on platform i are on the long market side and equally rationed. Hence, the
sellers� evaluation of platform i is given by

pm;iðNi ;Mi ; siÞ ¼
1

jMi j
DNi

bi

c

1� fi

� �� �
ðbi � 1Þc if i is active,

0 otherwise.

8<
: ð7Þ

Note that for bi > 1 the sellers� profits are strictly positive provided that platform
i is active. On the other hand, for bj ¼ 1, pm,j(Nj, Mj, sj) ¼ 0 irrespective of whether
platform j is active or not. So as long as there is an active non-market clearing platform,
its outcome is always strictly better for the sellers than the outcome of a market clearing
platform. That is, for all fi, fj,

jNi j > 0; jMi j > 0 and bi > bj ¼ 1) pm;iðNi ;Mi ; siÞ > pm;jðNj ;Mj ; sjÞ: ð8Þ

2. The Traders� Platform Choice

In our model, market designers first choose their platforms� characteristics and then
buyers and sellers decide which platform to join. If there is only one market designer,
traders� choices are trivial – they simply opt for the existing platform. With more than
one market designer, traders have to choose between the two platforms. For any given
si, sj, the choice of platform constitutes a coordination game. If all traders choose
platform i, no trader has an incentive to deviate to the other platform j. Furthermore, if
bi and bj are strictly larger than 1, full coordination on any platform is even a strict Nash
equilibrium. Hence, nothing guarantees coordination on any particular platform and
therefore traders have to learn which platform to use. In this Section, we introduce the
learning process and analyse long-run trading patterns and platform revenues for a
given configuration of designs.

11 We do not use this particular payoff function. If demand is derived from utility maximisation, though,
the realised (indirect) utility must be a strictly monotone transformation thereof.
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2.1. The Learning Process

We consider a social learning process defined by

(i) the information available to each trader,
(ii) the way traders revise their platform choices whenever they have the opportu-

nity,
(iii) the opportunities to revise a platform choice, and
(iv) the way traders make mistakes when choosing a platform.

The information available to a trader is not only his own experience (as it would be
in a reinforcement learning model, for instance). Rather, each trader observes the
prices and the quantities of both platforms (including the observation of the inactive-
ness of a platform). We also assume that an individual trader does not have enough
information on other traders or is not able to perform all the necessary computations
in order to predict the future behaviour of the other traders. Hence, individual traders
cannot accurately predict the future outcomes of the platforms. Furthermore, they also
lack the capability necessary to always compute an exact (but myopic) best reply to the
current choices of all other traders.

What can a trader do in such a situation? From his individual, myopic standpoint, if
he considers himself to be small relative to market size, the best thing he can do is to
evaluate the outcomes of both platforms and switch to the other platform if he per-
ceives the other platform’s outcome as better. A trader can perceive this behaviour as
approximately rational, since when he switches, the implied changes in prices and
traded quantities will most of the time be small and hence this behaviour is close to the
best reply. Of course, this could also be interpreted as imitation of successful traders of
the own market type. We want to stress, though, that the behaviour described does not
require the observation of any evaluation conducted by other traders but merely the
observation of prices and traded quantities in both platforms.

With this learning rule the switching decision of each trader depends on the trading
outcomes of both platforms in the last trading round. These trading outcomes depend
on the distribution of the traders over both platforms. Hence, the distribution of
traders over platforms depends on the last period’s distribution of traders over plat-
forms. A state x specifies which trading platform is chosen by each buyer and each
seller. The state space is given by X ¼ f1,2gjN j � f1,2gjM j, and trader k�s platform
choice in state x 2 X is denoted by x(k) 2 f1,2g. The following notation will prove
convenient:

NiðxÞ ¼ n 2 N jxðnÞ ¼ igf ð9Þ

MiðxÞ ¼ m 2 M jxðmÞ ¼ igf ð10Þ

i.e. Ni(x) ˝ N is the set of buyers who are on platform i in state x and Mi(x) ˝ M the
set of sellers who are on platform i in state x. By definition, all those traders who are
not on platform i have to be on the other platform j.

The state of the process at time t ¼ 0, 1, 2,. . . is given by x(t) 2 X. That is,
x(t)(k) 2 f1,2g denotes the platform chosen by trader k at time t.
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2.1.1. Unperturbed learning process
We first concentrate on the unperturbed learning process, where traders switch plat-
forms only because of learning but not because of experimentation (experimentation
is introduced in the next subsection). If an agent is able to revise his choice for a given
period t þ 1, he takes the new market outcomes of both platforms in period t and
evaluates them. As explained above, we postulate the following learning rule:

Assumption A. A trader, who gets the opportunity to revise, observes the outcomes of both
platforms in the last period. He chooses the platform whose outcome he evaluates as best. In case of
indifference, he stays with his old platform.

Whenever trader k receives a revision opportunity at period t, he will choose the
platform with the period t � 1 outcome that he evaluates highest. If, by chance, the
outcomes of both platforms are equally evaluated, the trader sticks to his former
platform choice. For instance, in the case in which one platform is inactive and the
other is active but yields zero profits for the sellers, sellers do not switch. This
assumption could be justified by small but positive switching costs.12

But when are agents allowed to revise their choices? It is common in learning models
to introduce some inertia explicitly allowing for the possibility that not all agents are
able to revise strategies simultaneously (or, for instance, accounting for idiosyncratic
switching costs). Different specifications of how revision opportunities arrive give rise to
different dynamics and often affect the results. Rather than adopting a specific for-
mulation, here we follow Al�os-Ferrer and Kirchsteiger (2008) and postulate a general
class of dynamics encompassing the standard examples (and many others).13 This
general dynamics is defined by the following assumptions.

Assumption B1. For every agent k and state x there is strictly positive probability that agent k
is the only trader of his own market side who is able to revise his platform choice.

Notice that B1 implies that every agent has a strictly positive probability of being able
to revise at any given state. It also allows the revision probability to depend on the state
x and on the identity of the trader, k.

Since we have two clearly differentiated populations, we introduce a weak form of
independence between the revision opportunities in those populations (it can actually
be considered as an anonymity requirement).

Assumption B2. For every agent k and state x, if k is the only one of his own market side who
is allowed to revise, either no trader of the other market side is able to revise his platform choice, or
there is a strictly positive probability for each trader of the other market side to be allowed to revise.

This Assumption explicitly excludes non-anonymous situations where, say, whenever
seller number 17 gets the opportunity to revise, buyers 3 and 6 also get the opportunity

12 See Oechssler (1997) for a discussion. In Al�os-Ferrer et al. (2006), we investigate a different tie-breaking
rule. Indifferent traders randomise their platform choice, i.e., every platform is chosen with a strictly positive
but not necessarily identical probability. All our results (in particular Theorem 10) are robust towards such a
modification of the tie-breaking rule.

13 See Al�os-Ferrer (2003) for a discussion. Learning processes fulfilling B1 correspond to �regular� learning
processes in Al�os-Ferrer and Netzer (2007).
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to revise. Assumptions B1 and B2 are rather general. They are fulfilled by the standard
models considered in the literature of learning in games. In these models, revision
opportunities are either modelled through independent probabilities (a case we call
independent inertia; see e.g. Samuelson (1994); Kandori and Rob (1995)) or assumed
to arrive in an asynchronous way (a case we term asynchronous learning; see Blume
(1995), Binmore and Samuelson (1997) and Benaı̈m and Weibull (2003)).14 That is,
our formulation covers the following standard examples.

Independent Inertia. For each agent k and each state x there is an exogenous, equal,
independent and strictly positive probability q < 1 that agent k does not get a revision
opportunity.

Asynchronous Learning. Each period, only one agent (i.e. either a buyer or a seller) is
(randomly) selected and allowed to revise his strategy.

Asynchronous Learning within Types. In our case, it is natural to conceive of a dynamic
where, in every period, only one buyer and one seller are selected (randomly and
independently) and given the opportunity to revise.

Obviously, B1 and B2 are fulfilled by all these types of learning. The specification
above allows for more general learning processes than those described by independent
inertia or asynchronous learning. Since the revision probability is allowed to be a
function of the state x, it might depend, for example, on the difference between the
evaluation of the outcomes of both platforms (so that unsatisfied traders are more
likely to revise), or on idiosyncratic characteristics of the currently chosen platform.

Assumptions A, B1, and B2 define a stationary Markov chain on the (finite) state
space X. Given two states x,x0 2 X, denote by P 0(x,x0) the probability of transition
from x to x0 in one period for the unperturbed learning process. The transition matrix
is given by P 0 ¼ [P 0(x,x0)]x,x02 X. An absorbing set of the unperturbed dynamics is a
minimal subset of states which, once entered, is never abandoned. An absorbing state is
an element which forms a singleton absorbing set, i.e. P 0(x,x) ¼ 1.15

As a first step in the analysis of long-run trading patterns, we determine the
absorbing sets of the unperturbed learning dynamics. Depending on the design of
the two platforms, there exist multiple such absorbing sets. The reason is that no
trader ever switches to a platform which does not have an agent of each market side
and/or has a bias below 1 and is therefore inactive. Moreover, indifferent traders do
not switch. In particular, sellers never switch to a market-clearing platform as it does
not offer a positive profit for them. These considerations lead to the following
results.

Lemma 1. Assume A, B1, and B2. Let i 6¼ j, XB
i ¼ fxjNiðxÞ ¼ Ng and XB

j ¼
fxjNjðxÞ ¼ Ng. All absorbing sets of the unperturbed dynamics are singletons. Depending on
platforms� characteristics, the absorbing states are as follows.

14 The reason we explicitly choose Assumptions B1, B2 is that, in the literature of learning in games, many
models are not robust to minute changes in the dynamic assumptions. We want to make explicit that our
model is not so sensitive to the details of the dynamics.

15 Our analysis of Markov chains as defined by the learning dynamics uses the methods and concepts
introduced in Kandori et al. (1993) and Young (1993). Detailed overviews can be found e.g. in Ellison (2000),
Fudenberg and Levine (1998) or Samuelson (1997).
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(a) If bi > 1 and bj > 1, the monomorphic states x�kðk ¼ i; jÞ such that
Nkðx�kÞ ¼ N ;Mkðx�kÞ ¼ M and every state in X0 ¼ fx j pm,i ¼ pm,j, pn,i ¼ pn,jg.16

(b) If bi > 1 and bj ¼ 1, the monomorphic state x�i , the cross-state x0
i with Niðx0

i Þ ¼ N ,
Miðx0

i Þ ¼ ;, and every state in XB
j (which includes x�j and x0

j ).
(c) If bi ¼ bj ¼ 1, the elements in XB

i and XB
j , plus, if and only if p(si) ¼ p(sj), every state

with two active platforms.
(d) If bi > 1 and bj < 1, the monomorphic state x�i , and all states in which platform i is

inactive ( for bj < 1, platform j is always inactive).
(e) If bi ¼ 1 and bj < 1, the elements of XB

i and all states in which platform i is
inactive.

( f ) If bi < 1 and bj < 1, all states x 2 X.

2.1.2. Perturbed learning process
In order to select among the multiple absorbing states, we now turn to the analysis of
the stability properties of the platforms with respect to experimentation. The dynamics
are enriched with a perturbation in the form of experiments (or mistakes) in the
following way. With an independent, small probability e > 0, each agent, in each
round, might experiment (or make a mistake or �mutate�), and simply pick a platform
at random,17 independently of other considerations.

The dynamics with experimentation is called perturbed learning process. Its transition
matrix is denoted by P e. Since experiments make transitions between any two states
possible, the perturbed process has a single absorbing set formed by the whole state
space (i.e. the process is irreducible) and there is a unique probability distribution over
states le 2 D(X) which, if taken as initial condition, would be reproduced in proba-
bilistic terms after updating (more precisely, leP

e ¼ le). This le is called the invariant
distribution of P e. For the perturbed dynamics P e the limit invariant distribution l*¼
lime!0 le exists and is an invariant distribution of the unperturbed process P 0 (see e.g.
Kandori et al. 1993; Young 1993; Ellison 2000). It singles out a stable prediction of the
unperturbed dynamics, in the sense that, for any e > 0 small enough, the play
approximates that described by l* in the long run. Thereby l*(x) is the probability
that (for small e) the process will be in state x in the long-run. The states in the support
of l*, i.e. fx 2 X j l*(x) > 0g are called stochastically stable states or long-run equilibria.
The set of stochastically stable states is the union of some absorbing sets of the original,
unperturbed chain (e ¼ 0).

We call a platform active in the long-run if there is a positive probability for trade at this
platform in the long-run, i.e., if there is a stochastically stable state with platform i being
active.18

16 X0 is non-empty as it always contains cross-states x0
i ði ¼ 1; 2Þ (see (b)).

17 We mean that an institution is picked up according to a pre-specified probability distribution having full
support. The exact distribution does not affect the results, as long as it has full support and does not depend
on e.

18 In the following, whenever we say absorbing sets or states, we refer to the unperturbed dynamics. Since
the perturbed dynamics is irreducible, no confusion should arise.
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Theorem 2. Assume A, B1, and B2.

(a) Suppose bi < 1. Then, platform i is not active in the long run.
(b) Suppose bi ¼ bj ¼ 1. Then, platforms i and j are active in the long run.
(c) Suppose bi > 1 and bj � 1. Then, platform i is active and j is inactive in the long

run.

The intuition for this theorem is straightforward. Since there is no trade on a plat-
form with bi < 1, it will never be active. Furthermore, on a market clearing platform
the sellers� profits are always zero. Hence, sellers do not care at which platform they are
if they have to choose between two market clearing platforms. Consequently, both
platforms are active in the long run if both are market clearing. Finally, a seller is never
worse off at platform i with bi > 1 than at platform j with bj � 1, even if there are no
buyers at i. A buyer, on the other hand, is worse off at j than at i when he finds no seller
at j. So sellers have an unambiguous tendency to learn to use i, whereas buyers do not
always have a tendency towards j. As a consequence, all traders will coordinate on the
non-market clearing platform i in the long run. On the level of the platform design, it is
thus easy to compete with a market clearing platform by introducing a platform design
with a positive price bias.

2.2. The Long-run Trading Patterns

We now proceed to analyse long-run trading patterns (i.e. the stochastic stability of
platforms) for a given design configuration si ¼ (bi, fi) and sj ¼ (bj, fj).

As a benchmark, we start with the case of identical platform design. To analyse plat-
forms with identical characteristics (si ¼ sj), we observe that, for every state x 2 X we can
uniquely define a so-called mirror state ~x by changing the platform affiliation of all
traders, that is, ~x is the only state such that Mjð~xÞ ¼ MiðxÞ and Njð~xÞ ¼ NiðxÞ. Then,

Lemma 3. Suppose si ¼ sj. Then, the distribution of traders over the platforms is symmetric in
the long run, i.e., l�ðxÞ ¼ l�ð~xÞ 8x 2 X.

Theorem 2 already identifies the set of long-run active platforms (i.e. stochastically
stable states with active platforms) whenever at least one platform i has a price bias
bi � 1. Hence we are left with design configurations si and sj where both price biases
favour sellers (i.e. bi,bj > 1). There, Lemma 1(a) implies that full coordination on each
platform and states with indifference of both buyers and sellers are the only candidates
for stochastically stable states. To pin down stochastic stability, it proves useful to dis-
tinguish the two platforms with respect to their prices.

Lemma 4. Suppose bi,bj > 1 and pi ¼ bic/(1 � fi) < bjc/(1 � fj) ¼ pj. Then,

(a) only monomorphic states can be stochastically stable.
(b) x�i is stochastically stable.

According to Lemma 4, the platform with trade at a lower price is always stochasti-
cally stable as it is preferred by buyers as long as it is active. The only other candidate for
stochastic stability is coordination on the high price institution. While all our previous
results did not depend on the modelling details such as
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(i) absolute population size of buyers and sellers,
(ii) the relative size of these populations,

(iii) the heterogeneity of buyers,
(iv) the price elasticity of demand,
(v) the grid size d, and

(vi) details of the learning process (e.g. adjustment speed, asymmetries between
buyers and sellers), these details do matter now as the following results illustrate.

Lemma 5. Suppose bi,bj > 1, pi ¼ bic/(1�fi) < bjc/(1 � fj) ¼ pj, so that x�i is stochasti-
cally stable.

(a) In a dynamics with independent inertia, x�j is also stochastically stable if and only if there
is at least one buyer ~n 2 N such that

d~n

bj c

1� fj

� �
ðbj � 1Þ > 1

jM j � 1
DN nf~ng

bi c

1� fi

� �
ðbi � 1Þ: ð11Þ

(b) In a dynamics with asynchronous learning, x�j is also stochastically stable if and only if
there is at least one buyer ~n 2 N such that

1

jM j � 1
d~n

bj c

1� fj

� �
ðbj � 1Þ > DN nf~ng

bi c

1� fi

� �
ðbi � 1Þ: ð12Þ

The condition in part (a) is violated whenever buyers are identical, j N j � j Mj, and
the price elasticity of demand is sufficiently high. It can be satisfied for bj > bi when-
ever buyers are sufficiently heterogeneous (i.e. ~n 2 N such that d~nðpÞ >>
dnðpÞ8n 6¼ ~n), or buyers are identical and jMj >> jNj, or d(p) is sufficiently inelastic.

The stochastic stability of x�j is harder to establish if the dynamics is slow as e.g. under
asynchronous learning. The condition in part (b) is violated whenever buyers are
identical and the price elasticity of demand is sufficiently high (in contrast to the case
of independent inertia, this holds independently of the sizes of populations jMj and
jNj). The condition can be fulfilled for bj > bi if buyers are sufficiently heterogeneous
or buyers are identical and demand is sufficiently inelastic.

Remark 1. The proofs of the previous lemmata (see Appendix A) rely on transition
paths involving at most two simultaneous mutations. Thus the speed of convergence is
relatively high. Since the number of required mutations does not increase with
population size, our dynamics escapes the well-known critique that for large popula-
tions the long run may actually be �too long� to be relevant (Kandori et al. 1993; Ellison
1993). We find this point important, because real-world designers are not infinitely
long-lived, and some market institutions (e.g. online platforms) appear to go out of
business relatively quickly if lacking customers. Since the speed of convergence of the
trader-learning process is quick, we think that our results remain relevant.

2.3. Platform Revenues and Designers� Profits

Till now we have analysed the learning dynamics of the traders and the resulting long
run pattern of trades. Next we turn to the revenues generated by the platforms, which
in turn determine the profits of the market designers.
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When analysing the market designers� choice of the characteristics of the trading
platforms we will assume that platform designers are long-lived, patient, and (relatively)
rational agents when compared with individual buyers or sellers. Hence, the designers
consider a platform profitable if it is active in the long run and they ignore revenues
made during the adjustment process to the limit invariant distribution.19 Given the
platform characteristics s ¼ (si,sj), the long-run expected revenues per round ERi(s)
depend on the limit invariant distribution. The profits of designer i are given by
pD,i(s) ¼ fi ERi(s) implying that pD,i(s) � 0 for all s.

Consider first a platform i with bi < 1.

Lemma 6. Suppose bi < 1. Then pD,i((bi,fi),sj) ¼ 0 for all feasible fi,sj.
Unsurprisingly, a platform with bi < 1 does not generate any profit for the designer

as it is always inactive. Hence, we are left with platform configurations (si,sj) where both
platforms have a price bias weakly larger than one. In this case expected revenues at
platform i depend not only on the design of platform i but also on the design of the
other platform as the following results indicate.

Lemma 7. Consider a platform configuration s ¼ (si,sj) with si ¼ (bi,fi), sj¼(bj,fj) and
prices pi ¼ bi[c/(1�fi)], pj ¼ bj[c/(1�fj)].

(a) If si ¼ sj and bi,bj � 1, then, pD;kðsÞ ¼ 1
2 fkpkDN ðpkÞ > 0 for k ¼ 1,2.

(b) If bi ¼ bj ¼ 1 and fi < fj, then fk pk DN (pk) > pD,k(si,sj) > 0 for k ¼ 1,2.
(c) If bi > 1 and bj � 1, then pD,i(si,sj) ¼ fi pi DN (pi) and pD,j(sj,si) ¼ 0.

The first part of this Lemma shows that for identical platforms the designers� long-
run profits are identical and strictly positive. This follows from the symmetry of the limit
invariant distribution (Lemma 3). With two market clearing institutions, none of the
platforms can reap all long-term revenues even if the fees differ. Finally and most
importantly, when a non-market clearing and a market-clearing platform compete, the
designer of the former makes strictly positive profits, whereas the profits of a designer
of a market-clearing institution are zero, because all traders coordinate on the
non-market clearing platform in the long run (see Theorem 2(c)).

3. The Platform Design

We now compare the design choices by a monopolistic designer and by two competing
designers.

3.1. Monopolistic Market Design

As a benchmark, we briefly consider the case where only one platform is available, with
characteristics s ¼ (b, f ). In this case traders have no choice but to use this platform
and designer’s profits are given by:

19 Otherwise, market designers� payoffs would depend on the initial distribution of the traders over the
platforms. In the absence of a plausible theory on the initial distribution, the results would be arbitrary.
Further, as pointed out in Remark 1, convergence to full coordination is fast and hence the assumption is, to
some extent, justified.
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pDðsÞ ¼ f
bc

1� f
DN

bc

1� f

� �
if b � 1

0 otherwise.

(
ð13Þ

It follows that a monopolistic designer introduces a market-clearing platform – as
long as the grid of feasible fees is fine enough.

Proposition 8. Suppose there is only one platform available. Then, the designer chooses a
market-clearing platform, i.e. b* ¼ 1, if c is sufficiently small.

The intuitive reason for this result is as follows. Suppose revenues pDN(p) are max-
imised at price p *. Note that this price can be attained with different (b,f ) combina-
tions and that p * ¼ bc/(1 � f) is increasing both in b and f. Since the monopolist
designer’s profits are fpDN(p), he will try to reach p* with that (b,f) combination that
has the highest fee and hence the lowest possible b � 1.

3.2. Competitive Market Design

In order to reflect that platform designers are �more rational� than individual buyers
and sellers, we simply consider them rational players in the normal-form game defined
by their payoff functions.20 That is, both designers choose their platforms simulta-
neously and payoffs are given as in Section 2.3. The sets of pure strategies of designer i
and j are given by Si ¼ Sj ¼ B � F. We also allow designers to use mixed strategies, i.e.
choose a probability distribution over S rather than picking up a particular charac-
teristic for sure.

Denote by ri the (mixed) strategy of designer i. The expected payoff of i is

pD;iðri ; rjÞ ¼
X
sj2S

X
si2S

rjðsjÞriðsiÞfiERiðsi ; sjÞ: ð14Þ

Since the sets of pure strategies are finite, a Nash equilibrium of the designers� game
always exists (possibly in mixed strategies). To characterise these equilibria, we need
the following Lemma.

Lemma 9. Let ðr�i ; r�j Þ be a Nash equilibrium (possibly in mixed strategies). Then, for any
pure strategy si ¼ (bi, fi) of player i such that r�i ðsiÞ > 0, it holds that bi � 1.

Lemma 9 is an immediate consequence of the fact that there is no trade at a platform
with b < 1. Therefore, only platforms weakly biased in favour of the sellers will be
chosen in equilibrium. We now show that, actually, in any equilibrium, both designers
will introduce platforms that lead to prices strictly above the market clearing level–
platforms that lead to market clearing prices will not be designed in equilibrium. This
result holds as long as the grid of feasible biases is fine enough.

Theorem 10. Let ðr�i ; r�j Þ be a Nash equilibrium (possibly in mixed strategies). For any pure
strategy si ¼ (bi,fi) of player i such that r�i ðsiÞ > 0, it holds that bi > 1 if d is sufficiently small.

20 As shown in Appendix B.1, our main results do not change if we consider boundedly rational market
designers who learn the same way as traders do.
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We have thus established the paradoxical result that competition among platform
designers will induce them to select biased platforms which implement non-competi-
tive market outcomes. As we have seen, competition between a market clearing and a
non-market clearing platform leads to full coordination of the traders on the latter
platform (see Theorem 2(c)). Hence, designers do not introduce a market clearing
platform when facing platform competition.

In general, nothing more can be said about the specific characteristics of the Nash
equilibria. A brief examination of Lemma 5 should convince the reader that a full
characterisation of the Nash equilibria will depend on the exact shape of the limit
invariant distribution, and not only on its support. This distribution in turn depends on
the details of the dynamics, e.g. whether learning opportunities arise simultaneously
among traders or asynchronously. In contrast, the last theorem holds for any specifi-
cation of the learning dynamics satisfying Assumptions B1 and B2.

Still, one might suspect that competition leads to platforms close to the market-
clearing one, i.e. to platforms with bi ¼ 1 þ d. If this hypothesis would be correct, the
chosen platforms would nearly resemble market-clearing ones as long as the grid of
feasible biases is fine enough. The next Proposition, however, shows that this
hypothesis is in general false. For simplicity, consider identical buyers with a demand
function d(p) and denote the price elasticity of demand by ep(p) ¼ �pd0(p)/d(p).

Proposition 11. Assume independent inertia, identical buyers and jM j ¼ jN j. If d and c
are sufficiently small and ep is not much larger than one, then there exists no Nash equilibrium
ðr�i ; r�j Þ (neither in pure nor in mixed strategies) where both designers introduce only platforms
with bi ¼ bj ¼ 1 þ d.

Beyond the features highlighted in Theorem 10, equilibrium designs are rather
sensitive to details of the economy and the learning process. It cannot be excluded that
in equilibrium designers choose �near market-clearing� platform characteristics for
some specifications of the learning dynamics and/or of the demand functions. But in
general the equilibrium choices are not �near market-clearing� platforms.

4. Discussion

We have shown that if several trading platforms are available, traders will learn to
coordinate on a platform with prices systematically above the market-clearing level,
if such a platform is feasible. This forces competing market designers to create such
non-market-clearing platforms. On the other hand a monopolistic market designer
will always introduce a market-clearing platform in order to maximise his profits.
Hence, we derive the paradoxical result that platform competition induces non-
competitive market outcomes. This result could also explain why so many B2B
platforms exhibit institutional designs that are notorious for biased (non-market-
clearing) prices (e.g. posted offer markets, proxy auctions with �hard-close� or Dutch
auctions).

The results of our article depend of course on our key assumptions. First, we have
focused on boundedly rational traders who choose platforms myopically. For fully
rational designers and traders, our set-up would correspond to a two stage game
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where, in stage 1, designers (simultaneously) choose platform designs, and in stage 2,
traders coordinate on platforms. The second stage thereby resembles a coordination
problem or a game with network externalities. Naturally, this structure induces a
multiplicity of equilibria – in particular, there is a subgame perfect equilibrium
where all traders coordinate on a market-clearing platform (with monopolistic trad-
ing fees). Our analysis of the coordination problem in stage 2 using a learning
dynamics can be interpreted as an equilibrium selection device, which rejects the
above-described equilibrium and selects only configurations with non-market-clearing
platform designs.

Second, we assumed asymmetric rationality in the sense that designers are more
sophisticated than traders. Furthermore, by focusing on long-run profits we have
implicitly assumed that it is much harder for designers to change the properties of
their platforms than for traders to switch trading platforms, or that platform pro-
viders are much more patient than traders. Cases such as the downfall of Enron
Online or the bankruptcy of CommerceOne illustrate, however, that this assumption
may not be fully justified. Sometimes platform providers indeed suffer rather quickly
from a lack of traders and are removed from the market at short notice. But our
modelling framework can cope with cases where platform designers and traders
revise their decisions with equal speed. In Appendix B we investigate the case of
boundedly rational designers who have to learn how to design a platform through a
regular (trial-and-error) design revision process (i.e., designers are as myopic or
impatient as traders). Our main results carry over to such a setting. Hence, while
asymmetric rationality is a crucial ingredient of our model, it is not the driving force
behind the emergence of non-market clearing institutions. Furthermore, our results
also hold when the traders� learning process shows a relatively high speed of con-
vergence. In real life this would imply that a market designer can enter and remain
in the market with a superior design, because traders can coordinate on the
respective platform at short notice. In this sense our model allows for the �free
entry� of superior platform designs and still non-market clearing institutions emerge
in equilibrium.

Third, we have assumed sellers to be producers endowed with a technology with
constant returns to scale. Although this is a focal, economically meaningful case, it
clearly simplifies the analysis and allows for a clear-cut derivation of the results. Under
production technologies exhibiting decreasing returns to scale, the results are less
strong and a characterisation of the limit invariant distribution requires both a further
specification of the learning behaviour of the traders and a further specification of
demand and supply. In Appendix B we provide an extended example with decreasing
returns to scale where our main result still holds. It shows, however, that the optimality
of a price bias is no longer independent of details like learning velocities. Nonetheless,
this clearly illustrates that the scope of the paradox identified here goes beyond the
constant returns to scale case.

These robustness checks show that neither the assumption of constant returns
to scale nor that of rational designers drive our results. Rather, it is indeed
platform competition that leads to the emergence of non-market-clearing trading
platforms.
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Appendix A. Proofs

The proofs rely on the well-known characterisation of the invariant distribution of a Markow
Chain developed by Freidlin and Wentzell (1984) and its implications for stochastic stability as
discussed by Kandori et al. (1993) and Young (1993), which we briefly review here. Lemma 3.1
from Freidlin and Wentzell (1984) states the following. Fix an x 2 X. An x�tree T is a tree in X
with root x, i.e. a graph on X such that for every state x0 6¼ x there exists a unique directed path
from x0 to x. Let T x be the set of all x�trees and define qx �

P
T2T x

Pðx0 ;x00Þ2T P ðx0;x00Þ (i.e. qx

is the product of all transition probabilities on a given x�tree summed over all x�trees). Then,
the invariant distribution for fixed e is given by le(x) ¼ qx/

P
x2Xqx. Relying on this result,

Kandori et al. (1993) or Young (1993) observe that in the limit as e!0, l*(x) is determined by
those x�trees that imply the smallest possible number of mutations necessary to form a tree in X.
Given two states x and x0, let c(x,x0) (the transition cost from x to x0) denote the minimal
number of experiments necessary for a transition (or link) from x to x0 along a positive prob-
ability path starting in x and leading to x0. The cost of an x�tree is the sum of all costs along
links in it. Let c(x) (the stochastic potential of x) be the minimal cost of an x�tree. A state x is
stochastically stable if and only if its stochastic potential is minimal, i.e. c(x) � c(x0) for all
x0 2 X. Let A be the set of absorbing sets. If X 2 A, all states in X have the same stochastic
potential, denoted c(X ).

Proof of Lemma 1
(a) Let b1 > 1 and b2 > 1. Monomorphic states are absorbing because at the corresponding
platform both buyers and sellers make strictly positive profits and the other platform is inactive.
Thus traders stay at the active one. Moreover, elements of X0 are absorbing because traders do
not switch if the respective profits are identical on both platforms. It is now enough to show
that there exists a positive probability path from any other to a monomorphic state or a state
in X0.

Consider x j2X0 [ fx�i g [ fx�j g. At least one platform has to be active. If only platform i is
active, the monomorphic state x�i is reached with positive probability because buyers and sellers
receive positive profits at platform i and zero profits at platform j. Hence, suppose that both
platforms are active. Suppose that p(si) 6¼ p(sj) and (without loss of generality) that p(si) < p(sj).
Then, buyers strictly prefer platform i to platform j. By B1 and B2, there is positive probability
that all buyers at j receive revision opportunity in successive periods and only sellers at platform j
receive revision opportunity. Then, buyers will switch away from j and no new seller will switch to
j. Thus, either the monomorphic state x�i is eventually reached, or j becomes inactive Now
suppose that p(si) ¼ p(sj). Buyers are indifferent and will never switch. As x j2 X0, sellers prefer
one platform and there is a positive probability path to a state with an inactive platform or a state
in X0.

(b) Let bj ¼ 1 and bi > 1. Monomorphic states are absorbing, because at the corresponding
platform both buyers and sellers make weakly positive profits and the other platform is inactive.
Thus traders do not switch. Cross states are absorbing because traders do not switch if profits are
identical on both platforms. Finally, sellers receive zero profits at platform j. Hence, they are
indifferent between an inactive platform i and platform j, so they never switch. Buyers strictly
prefer an active platform j to an inactive platform due to strictly positive profits. Therefore, all
states in XB

j ¼ fxjNjðxÞ ¼ N g are absorbing.
It remains to show that there exists a positive probability path from any x j2XB

j [ fx0
i g to a

monomorphic state or a state in XB
j . In such a state x, at least one platform has to be active. If

only platform i is active, buyers and sellers strictly prefer i to j and x�i is reached with positive
probability. If only platform j is active, buyers strictly prefer j to i while sellers do not switch at all.
Hence, a state in XB

j is reached with positive probability. If both platforms are active, sellers
strictly prefer i and, by B1 and B2, there is positive probability that all sellers at j but only buyers at

2010] 233T H E P L A T F O R M D E S I G N P A R A D O X

� The Author(s). Journal compilation � Royal Economic Society 2009



i receive revision opportunities in successive periods. Hence, sellers will switch away from j and no
new buyer will switch to j. Thus, either the monomorphic state x�i is eventually reached, or j
becomes inactive.

(c) Let bi ¼ bj ¼ 1. Then, sellers never switch. Suppose first that p(si) 6¼ p(sj). Buyers strictly
prefer an active to an inactive platform and are indifferent between two inactive platforms.
Hence, states in XB

i ¼ fxjNiðxÞ ¼ N g and XB
j ¼ fx jNjðxÞ ¼ N g are absorbing. It is enough

to show that there exists a positive probability path from any state outside XB
j [ XB

i to a state
inside this joint set. Consider x j2XB

j [ XB
i . In x, at least one platform has to be active. If only one

is active, buyers strictly prefer this platform to the other. Hence, a state in XB
i or XB

j (depending
on which was the active platform) is reached with positive probability. If both platforms are active,
suppose without loss of generality that p(si) < p(sj). Then, buyers strictly prefer platform i and
there is a positive probability path to an element in XB

i .
Consider now the case p(si) ¼ p(sj). States in XB

i and XB
j are absorbing, because buyers strictly

prefer an active to an inactive platform. Also, every state with two active platforms is absorbing,
because buyers are indifferent between active platforms. Consider a state x with exactly one
active platform (i, say) which is not in XB

i . Then, buyers strictly prefer i to j and there is a positive
probability path to a state in XB

i .
(d) Let bi > 1 and bj < 1. Then, platform j is always inactive. If platform i is active, buyers

and sellers strictly prefer platform i to platform j. Hence, x�i is absorbing. If platform i is
inactive, buyers and sellers do not switch at all. Hence, every state with an inactive platform i
is absorbing.

To complete the proof consider a non-monomorphic state x with an active platform i. Then,
buyers and seller strictly prefer platform i to platform j and there is a positive probability path
to x�i .

(e) Let bi ¼ 1 and bj < 1. Then, sellers never switch and platform j is always inactive. If
platform i is active, buyers strictly prefer i to j. Hence, every state in XB

i is absorbing. If platform i
is inactive, buyers and sellers do not switch at all. Hence, every state with an inactive platform i is
absorbing. Consider a state x j2XB

i with an active platform i. Then, buyers strictly prefer platform
i to platform j and there is a positive probability path to a state in XB

i .
(f) If bi, bj < 1, neither buyers nor sellers switch, hence every state is absorbing.

Proof of Theorem 2
(a) For bi < 1, no trade occurs at platform i independent of the number of buyers or sellers at

platform i.
(b) Let X 2 A, then c(X) � jAj � 1 as at least one mistake is needed for a transition between

any two absorbing sets.
A transition between any two absorbing states x, x0 with kMi(x)j � jMi(x0)k þ

kNi(x)j � jNi(x0)k ¼ 1 is possible with one mistake. Also a transition from a cross-state x0
i to x�j

is possible with one mistake: Consider x0
i and a buyer who (by mistake) switches to platform j. As

platform i is inactive and buyers receive strictly positive profits at platform j, by Assumptions B1
and B2 there is a positive probability path of the unperturbed dynamics to x�j . Hence c(X) ¼
jAj � 1 for all X 2 A and every state in A is stochastically stable.

(c) Let bj ¼ 1. The absorbing states are x�i ;x
0
i and the states in XB

j . A transition from x�i to an
element in XB

j [ fx0
i g needs at least two mistakes because buyers and sellers receive strictly

positive profits at i. Hence, c(x) > jAj � 1 for x 2 XB
j [ fx0

i g. A transition between any two
states x;x0 2 XB

j with kMj(x)j � jMj(x0)k ¼ 1 is possible with one mistake. A transition from the
cross-state x0

j to x�i is possible with one mistake: Consider x0
j and a buyer who (by mistake)

switches to platform i. As platform j is inactive and buyers receive strictly positive profits at
platform i, by Assumptions B1 and B2 there is a positive probability path of the unperturbed
dynamics to x�i . In the same way, one can also construct a positive probability path (with one
mistake by a seller) from x0

i to x�i . Hence, cðx�i Þ ¼ jAj � 1 and x�i is the only stochastically stable
state.
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Let bj < 1. Then, A consists of x�i and the states without active platforms. A transition from x�i
to a state with two inactive platforms needs at least two mistakes because buyers and sellers receive
strictly positive profits at i. Hence, c(x) > jAj � 1 for x 2 Anfx�i g. A transition between any two
states x;x0 2 Anfx�i g with kMi(x)j � jMi(x0)kþkNi(x)j � jNi(x0)k ¼ 1 is possible with one
mistake. A transition from the cross-state x0

j to x�i is possible with one mistake as well, exactly as
in the case bj ¼ 1. Hence, cðx�i Þ ¼ jAj � 1 and x�i is the only stochastically stable state.

Proof of Lemma 3
Follows directly from Pðx;x0Þ < Pð~x; ~x0Þ 8x, x0 2 X which holds for si < sj due to platform

symmetry (recall Assumption A).

Proof of Lemma 4
If pi < pj, buyers strictly prefer platform i to platform j whenever it is active. Lemma 1(a)

implies that the states x�i , x�j , x0
i and x0

j form the only absorbing sets. A single experiment
suffices for a transition from a cross state to a monomorphic state: consider without loss of
generality x0

i and suppose a buyer switches (by mistake). Then, platform j is active and
platform i is not. Buyers and sellers strictly prefer platform j and there is a positive probability
path to x�j . In contrast, at least two experiments are necessary for a positive probability path
from a monomorphic state to another monomorphic state or a cross-state: consider without
loss of generality x�i . As long as only one trader switches (by mistake), platform j remains
inactive and platform i is strictly preferred by buyers and sellers. As a consequence,
cðx0

i Þ � 5, cðx0
j Þ � 5, cðx�i Þ � 4, and cðx�j Þ � 4. There is a positive probability path with two

experiments from x�j to x�i : Consider x�j and suppose that a buyer and a seller switch (by
mistake) to platform i. Then, platform i is active and buyers strictly prefer platform i to
platform j. By Assumptions B1 and B2, there is a positive probability that only buyers and
sellers at j receive revision opportunity. But then, x�i is reached with positive probability.
Hence, cðx�i Þ < 4 < 5 � cðx0

i Þ and cðx�i Þ < 4 < 5 � cðx0
j Þ which shows Part (a). Part (b)

follows from cðx�j Þ � 4.

Proof of Lemma 5
By the proof of Lemma 4, cðx�i Þ ¼ 4 if bi, bj > 1 and pi < pj. By Lemma 1(a), only the

monomorphic states can be stochastically stable. Hence, a necessary and sufficient condition for
the stochastic stability of x�j is cðx�j Þ ¼ 4.

Since pi < pj, buyers never switch to platform j as long as i is active. Hence, x�j has to be reached
through switching of all sellers to platform j and a subsequent switch of all buyers to the only
remaining active platform.

In case (a), under independent inertia there is positive probability that all sellers at platform j
simultaneously receive the opportunity to revise. If one seller and buyer ~n 2 N are already
present at platform j, sellers will switch to j if

d~n

bj c

1� fj

� �
ðbj � 1Þ > 1

jM j � 1
DN nf~ng

bi c

1� fi

� �
ðbi � 1Þ:

Hence, this condition is sufficient for the stochastic stability of x�j . To see that it is also
necessary suppose that it is violated. Then no seller will switch to j after one seller and any
buyer ~n induced trade on this platform. As a consequence, more than 2 experiments are
needed to reach x�j .

Consider part (b) (asynchronous learning). Suppose one seller and buyer ~n switch to platform j
by mutation. By B1 and B2, with positive probability in the subsequent rounds only sellers and
buyers at platform i receive the opportunity to revise. If

1

jM j � 1
d~n

bj c

1� fj

� �
ðbj � 1Þ > DN nf~ng

bi c

1� fi

� �
ðbi � 1Þ
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it follows that

1

jMj j
d~n

bj

1� fj

� �
ðbj � 1Þ > 1

jM j � jMj j
DN nf~ng

bi

1� fi

� �
ðbi � 1Þ

for all Mj with 1 � jMjj � jMj � 1. Hence, sellers prefer platform j whenever it is active and
there are at least one and less than jMj sellers already there. Thus, there is a positive probability
path with just two mutations from x�i to x�j where first all sellers move to platform j and
subsequently all buyers switch to j as it is the only active platform. Hence, the condition displayed
in the Lemma is sufficient for the stochastic stability of x�j . To see that it is also necessary, suppose
it is not fulfilled. Then a seller at platform i prefers to stay there if all other sellers are at platform
j together with any buyer ~n. Under asynchronous learning this implies that at least a third
mutation is needed to reach x�j , which implies that this state cannot be stochastically stable by
Theorem 2(a).

Proof of Lemma 6
Follows from the fact that trade is never possible on platforms with bi < 1 (see Theorem 2(a)).

Proof of Lemma 7
(a) follows from Lemma 3 as the price and the traded quantity in x at platform i are identical

to those in ~x at platform j.
(b) follows from Theorem 2(b). (c) follows from Theorem 2(c).

Proof of Proposition 8
For b < 1 the profits for a monopolistic designer are zero, whereas for b � 1 and for 0 < f < 1

the profits are strictly positive. Hence, b* � 1. Now assume for a moment that b and f are
continuous variables with f 2 [0,1] and b 2 [1,1). Denote p ¼ bc/(1�f ) and recall that
limp!1dn(p)p ¼ 0 for all n 2 N. Hence, it must hold that 0 < f * < 1. Differentiating the
designer’s profits yields (for b � 1)

@pD

@f
ðb; f Þ ¼ pDN ðpÞ þ f

@p

@f
½DN ðpÞ þ pD 0N ðpÞ�

@pD

@b
ðb; f Þ ¼ f

@p

@b
½DN ðpÞ þ pD 0N ðpÞ�

where

@p

@f
¼ bc

tð1� f Þ2
> 0 and

@p

@b
¼ c

1� f
> 0:

Let the optimal price be p* ¼ b*c/(1�f *). Since 0 < f * < 1, the first order conditions for the
designer’s optimum imply that

@pD

@f
ðb�; f �Þ ¼ 0;

thus DN ðp�Þ þ pD 0N ðp�Þ < 0. This implies that

@pD

@b
ðb�; f �Þ < 0;

hence the designer’s profits are maximised at the corner solution b* ¼ 1.
In our model b and f are not continuous variables. However, if the grid of feasible fees is fine

enough, the optimal fee approximates the one of the continuous case, and hence the optimal b is
1 also in the discontinuous case. Hence we conclude that a monopolistic market designer would
introduce a market clearing platform.
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Proof of Lemma 9
Assume to the contrary that there exists a pure strategy �si ¼ ð�bi ; �fiÞ with r�i ð�siÞ > 0 and �bi < 1.

By Lemma 6 this pure strategy gives designer i a profit of zero against all strategies of j. Hence,
pD;ið�si ; r�j Þ ¼ 0 and, since r�i is an equilibrium strategy, pD;iðr�i ; r�j Þ ¼ 0.

Suppose that, in equilibrium, j chooses only platforms with bj < 1. That is, bj < 1 for all sj ¼
(bj,fj) 2 S with r�j ðsjÞ > 0. If designer i chooses with certainty a platform s 0i with b 0i > 1,
Lemma 7(c) implies that pD;iðs 0i ; r�j Þ ¼ f 0i ½ðb 0i cÞ=ð1� f 0i Þ�DN ½ðb 0i cÞ=ð1� f 0i Þ� > 0. Since
pD;iðr�i ; r�j Þ ¼ 0, this contradicts that ðr�i ; r�j Þ is a Nash equilibrium.

Thus, there must exist an �sj with �bj � 1 such that r�j ð�sjÞ > 0. Then, if designer i deviates to the
pure strategy s 0i ¼ �sj , pD;iðs 0i ; r�j Þ ¼ r�j ð�sjÞfi ERiðs 0i ; �sjÞ þ

P
sj 2 S 0�sj

r�j ð�sjÞpD;iðs 0i ; sjÞ. Since by Lemma

7(a) ERiðs0i ; �sjÞ > 0, we conclude that pD;iðs0i ; r�j Þ > 0, again contradicting that ðr�i ; r�j Þ is a Nash
equilibrium.

Proof of Theorem 10
By the previous Lemma, only platforms with b � 1 will be designed in equilibrium. Assume by

contradiction that there exist some pure strategies si ¼ (bi, fi) with r�i ðsiÞ > 0 and bi ¼ 1. Denote
a strategy of this type by �si ¼ ð1; �fiÞ and let �p ¼ c=ð1� �fiÞ. Denote the carrier or support of r�j by
Cðr�j Þ ¼ fsj ¼ ðbj ; fjÞ 2 S j r�j ðsjÞ > 0g.

Let pD,i(si, rj) denote the expected payoff if designer i chooses si for sure and j chooses the
probability distribution rj. Suppose that, for all sj 2 Cðr�j Þ we actually had that bj > 1. This
implies by Lemma 7(c) that pD;iðr�i ; r�j Þ ¼ pD;ið�si ; r�j Þ ¼ 0. Take any s0i ¼ s0j 2 Cðr�j Þ. By Lemma
7(a), and recalling that pD,i(si , sj) � 0 for all si,sj, we obtain that

pD;iðs 0i ; r�j Þ � r�j ðs 0j Þf 0j ERjðs 0i ; s 0j Þ > 0:

Hence, player i would have an incentive to deviate from r�i , a contradiction.
We conclude that there exists some sj 2 Cðr�j Þ with bj ¼ 1. Let C1ðr�j Þ ¼ fsj ¼
ðbj ; fjÞ 2 Cðr�j Þ j bj ¼ 1g. Notice that, since �si ¼ ð1; �fiÞ, we have by Lemma 7(c) that
pD;ið�si ; sjÞ ¼ 0 for all sj 2 Cðr�j Þ with bj > 1. Then, by Lemma 7(a, b),

pD;ið�si ; r
�
j Þ <

X
fr�j ðsjÞ �fi �p DN ð�pÞjsj 2 C1ðr�j Þg:

However, for any s0i with b0i > 1 and f 0i ¼ �fi ,

pD;iðs0i ; r�j Þ �
X
fr�j ðsjÞ �fi b

0
i

�p DN ðb 0i �pÞ j sj 2 C1ðr�j Þg

due to Lemma 7(c) (the inequality follows from the fact that pD;iðs0i ; sjÞ � 0 for all sj). This latter
expression is continuous in b0i . Thus, for b0i approaching one from above,
pD;iðs0i ; r�j Þ > pD;ið�si ; r�j Þ ¼ pD;iðr�i ; r�j Þ. Hence, if the grid is fine enough21 player i has an
incentive to deviate from r�i to an institution with b0i > 1 but close enough to 1, a contradiction.

Proof of Proposition 11
Lemma 5 (a) implies that if bic/(1�fi) < bjc/(1�fj), x�j is stochastically stable iff

d
bj c

1� fj

� �
ðbj � 1Þ > d

bi c

1� fi

� �
ðbi � 1Þ: ðA:1Þ

Part (b) follows from (a). To see (a), assume to the contrary that b ¼ 1 þ d for all platform
characteristics in the support of r�i and r�j . Denote by �fi and �fj the highest fee of a platform in
the support of r�i and r�j , respectively. Without loss of generality assume that �fj � �fi . We can
distinguish three cases:

21 The grid can be assumed to be ex ante fine enough by a uniform continuity argument.
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(i) �fj > �fi : Condition (A.1) shows that full coordination on platform �sj ¼ ð1 þ d; �fjÞ is not
stochastically stable vis-�a-vis any platform characteristics in the support of r�i . Hence, this strategy
earns designer j zero profits and, since it is assumed to be in the support of j�s equilibrium
strategy, j�s equilibrium profits would be zero. But j could always guarantee himself a strictly
positive profit by playing the same (possibly mixed) strategy as i. Hence, case (i) is inconsistent
with Nash equilibrium.

(ii) �fi ¼ �fj > fmin. Condition (A.1) shows that full coordination on platform �si ¼ ð1 þ d; �fiÞ is
not stochastically stable vis-�a-vis any platform characteristics in the support of r�j but platform
�sj ¼ ð1 þ d; �fjÞ. Furthermore, Lemma 3 implies that l�ðx�i Þ ¼ l�ðx�j Þ ¼ 1

2 if �si is chosen by i and
�sj is chosen by j. Therefore

pD;ið�si ; r
�
j Þ ¼ r�j ð�sjÞ

1

2
�fi
ð1þ dÞc

1� �fi
jN jd ð1þ dÞc

1� �fi

� �
:

But choosing the alternative platform design s0i with f 0i ¼ �fj � c, and b0i ¼ 1 þ d implies that

1þ d
1� f 0i

c <
1þ d

1� �fj
c and d

1þ d

1� �fj
c

� �
d < d

1þ d
1� f 0i

c

� �
d:

Hence, again by (A.1) l�ðx�i Þ ¼ 1 if s0i is chosen by i and �sj is chosen by j, which yields

pD;iðs0i ; r�j Þ � r�j ð�sjÞð�fi � cÞ ð1þ dÞc
1� �fi þ c

jN jd ð1þ dÞc
1� �fi þ c

� �
:

If the grid of F is fine enough, i.e. if c is small enough, this implies pD;iðs0i ; r�j Þ > pD;ið�si ; r�j Þ, a
contradiction with Nash equilibrium.

(iii ) �fi ¼ �fj ¼ fmin – both designers choose �si ¼ �sj ¼ ð1þ d; fminÞ for sure. Then Condi-
tion (A.1) guarantees the existence of a b

0

j > 1 þ d and a f 0j > fmin such that platform j is
stochastically stable vis-�a-vis �sj if the grid F is sufficiently fine, i.e. if c is sufficiently small. Fur-
thermore, if ep is not much larger than 1, designer j�s profits from full coordination on his
platform with design s0j ,

i.e. jN jf 0j
b0j c

1� f 0j
d

b0j c

1� f 0j

 !
;

is strictly larger than the respective profit from choosing �sj ,

i.e. jN j�fj
ð1þ dÞc

1� �fj
d
ð1þ dÞc

1� �fj

� �
:

It remains to show that no decrease in l�ðx�j Þ overcompensates this effect. To see this
suppose that b0j >

�bj ¼ 1 þ d in such a way that dðp0jÞðb0j � 1Þ > jM jjN jdðpiÞd (feasible if d is
sufficiently small). Then sellers prefer platform j with characteristics s0j whenever it is active,
while buyers prefer platform i with characteristics �si . With independent inertia and jMj ¼ jNj,
this establishes symmetry of the transition matrix P and hence l�ðx�i Þ ¼ l�ðx�j Þ ¼ 1=2.
Therefore, choosing in this case b0j > 1 þ d and f 0j > �fj does not reduce l�ðx�j Þ while it strictly
increases revenue in x�j . Hence, �sj with �bj ¼ 1 þ d and �fi ¼ fmin can not be a best response to
�si ¼ ð1þ d; fminÞ.

Appendix B. Robustness of the Results

We have derived our results under two crucial assumptions. First, designers are assumed to be
rational while traders are not (asymmetric rationality). Even though this assumption seems to be
justified in a wide range of applications, one might be interested in the robustness or our results
with respect to the (bounded) rationality of designers. We discuss the case of learning designers
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in Section B.1. Second, we assumed that sellers have a constant-returns-to-scale technology. In
Section B.2. we analyse an example with decreasing returns that illustrates the robustness of our
findings.

B.1. Boundedly Rational Designers

To account for learning designers, we have to extend the state space by the feasible design
configurations, and we have to redefine the (unperturbed learning process). The state space is
given by X ¼ f1,2gn � f1,2gm � S2. A state x 2 X denotes the location of buyers and sellers and
the design of both platforms. Traders learn according to Assumption A. The learning process of
designers is defined as follows.

Assumption C. A designer who gets the opportunity to revise, observes the revenues and designs of
platforms in the last period. If revenues differ, he chooses the design which led to a higher revenue (imitation).
If both platforms generate zero profits, he randomises with positive probability in the next round over all
possible design alternatives (innovation).22 In case of identical positive profits at both platforms designers
stick to their former choice (inertia).

We further assume B1 and B2 (on the enlarged state space and for three instead of two
different types of players).23 The perturbations are defined as in Section 2.1. The perturbed
process is again irreducible. We now prove the counterpart of Theorem 2 in the modified
learning model.

Proposition 12. Assume A, B1, B2, and C. Then, bi > 1 for i ¼ 1,2 in every stochastically stable
state.

Proof. Throughout this proof, we adopt the convention that for a given platform i the other
platform is denoted by �i.

First, observe that the monomorphic state x�i with bi � 1 (and b�i ¼ bi) is an absorbing state
of the unperturbed process. Second, each cross-state with designers randomising over all designs
forms a (non-singleton) absorbing set.

A platform i with a positive number of buyers and sellers cannot have a price bias bi < 1 in any
absorbing set. To see this, consider a state x with Ni(x) 6¼ / and Mi(x) 6¼ / and bi < 1.

Case 1: Suppose b�i � 1 and platform �i is active. Then, there is a positive probability that i
imitates �i (inducing bi � 1) without any migration of buyers and sellers. Both platforms yield
positive profits and have the same design. For this case Assumption C implies that designs can
only change if a cross state is reached. But a cross state (with randomising designers) forms an
absorbing set. Hence, the unperturbed process never reaches a state with bi < 1 and a positive
number of buyers and sellers at i again.

Case 2: Suppose b�i � 1 and platform �i is inactive or b�i < 1. Then, both platforms generate
profits of zero and designers randomise. With positive probability, platform i will have bi > 1 and
generate positive profits for designers, buyers and sellers while b�i < 1. Then, x�i with bi > 1 is
reached with positive probability.

Moreover, a state where both platforms are active and one has bias bi > 1 and the other bias
b�i ¼ 1 cannot be part of an absorbing set. To see this, observe that from such a state there is
always a positive-probability path to x�i because sellers strictly prefer platform i and there is a
positive probability that they are the only ones with an opportunity to revise for sufficiently many
periods.

22 For simplicity, we assume that designers randomise over S with full support.
23 This specification also allows for different learning speeds for traders and designers, allowing for

example, for the likely situation where buyers and sellers revise with a larger probability than designers.
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Hence, absorbing sets are of three kinds. First, states where all active platforms have price
biases b > 1. Denote the set of such absorbing sets by A0 and the set of all other absorbing sets by
A1. Second, states where either two active platforms have price bias b ¼ 1, or the only active
platform has price bias b ¼ 1. Last, cross states where no platform has a positive number of buyers
and sellers.

To prove the Proposition, we compare the stochastic potential of absorbing sets in A0 and A1.
First, observe that it takes at least two mistakes to leave an absorbing set in A0. If only one
platform i is active, the corresponding absorbing state will be x�i . Because both types of traders
receive positive profits, mistakes by both types of traders are needed to induce another active
platform. It takes also more than one mistake to reach a cross state. If both platforms are active,
designers generate positive profits and designs will only change to b � 1 if a cross state is
reached (inertia and imitation do not lead to platforms with b � 1; and designers innovate only
in cross-states). However, from a state with two active platforms, it takes more than one mistake by
traders to reach a cross-state.

If there is only one active platform i, with bias bi ¼ 1, then platform �i also has b�i ¼ 1 due to
imitation. At i all buyers and at least one seller are assembled. The different absorbing states
differ only with respect to the number of sellers and can be connected to a (restricted) tree with
one mistake per absorbing set (see the proof of Theorem 2). This tree can be connected to the
cross states with one mistake. If two active platforms have price bias b ¼ 1, prices have to be the
same at both platforms and sellers do not make any profits on both platforms. The respective
absorbing sets can be connected with one mistake (i.e., a switching seller) per absorbing set and
the resulting tree can again be connected to the cross states with one mistake. Hence, there is a
tree with root in some cross state connecting all absorbing sets in A1 with one mistake per
absorbing set. But a cross state can be left with one mistake towards a monomorphic state in A0

(due to innovation, there is a positive probability that there is a platform i with bi > 1 and, with
one mistake, this platform becomes active and is strictly preferred by all traders). Denote by
~x 2 A0 the state which minimises the number of mistakes needed to form a tree restricted to A0.
For a tree in X, the minimal cost of a ~x-tree is jA1j þ x~x where x~x is the minimal number of
mistakes needed to connect all states in A0 to the respective ~x-subtree. Now consider a state
x̂ 2 A1. To construct a minimal-cost x̂-tree, we take the ~x-tree, delete the outgoing link of x̂
(which has cost one), and add a (least-resistance) link from ~x to a state in A1 (of cost larger than
one). Hence, cðx̂Þ > cð~xÞ.

In every stochastically stable state traders are therefore located at a platform i with bi > 1. We
conclude that boundedly rational platform designers exhibit qualitatively the same behaviour as
rational ones: Platform competition forces them to introduce non-market clearing platforms
only.

B.2. Decreasing Returns to Scale

Consider the following example. Two identical sellers produce with costs given by cðqÞ ¼ ð1=2Þq2.
For given prices (pi) and fees (fi) at a platform i, their profit is pm;iðq; piÞ ¼ ð1� fiÞpiq � ð1=2Þq2

and maximisation leads to the supply function s(pi) ¼ (1�fi)pi. Two identical buyers, each
with income of one unit, consume q units of the commodity traded at the platforms and x units
of a second commodity which price is normalised to 1. The buyers� utility is given by
pnðq; xÞ ¼ 2

ffiffiffi
q
p þ x and utility maximisation for a given price pi at the respective platform yields

the buyer’s demand function dðpiÞ ¼ 1=p2
i . Equating demand and supply gives the market

clearing price at platform i in state x p�i ðxÞ ¼ riðxÞ1=3ð1 � fiÞ�1=3 (with ri(x) ¼ jNi(x)j/jMi(x)j).
Traders� and designers� profits depend on state and design and are calculated the same way as
before. For our purposes it suffices to note that sellers are not rationed whenever bi � 1 and
their corresponding profit pm;iðMiðxÞ;NiðxÞ; siÞ ¼ 1

2 ð1 � fiÞ4=3b2
i r

2=3
i is increasing in bi and

decreasing in fi. Analogously, sellers are rationed for bi > 1 and profits amount to
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pm;iðMiðxÞ;NiðxÞ; siÞ ¼ ð1 � fiÞ4=3ð1=biÞr
2=3
i ½1 � ð1=2b3

i Þ� which is also monotonically decreasing
in fi but reaches a (global) maximum at bi ¼ 21/3.24

For expositional ease we further specify the learning model and assume independent
inertia within types. That is, in every round any seller m 2 M is allowed to revise his location
decision with probability qS 2 ]0,1[ while every buyer is allowed to revise with probability
qB 2 ]0,1[.

Full coordination on any platform is an absorbing state (both types of traders get strictly
positive profits on any active platform). Analogously to Lemma 1, it is easy to see that the
monomorphic states and the states in X0 ¼ fx j pm,i ¼ pm,j,pm,i ¼ pm,jg form the only absorbing
sets. Moreover, only the monomorphic states can be stochastically stable. The designers� profits,
though, depend not only on the support of the limit invariant distribution l* but also on its
weights for the different (monomorphic) states. Hence, analysing this setting requires a direct
application of Lemma 3.1 in Freidlin and Wentzell (1984).

To economise on notation, identify a state with a pair (k, l ) where k is the number of selelrs
and l the number of buyers present at platform i. Let P �i ¼ Pðð1; 1Þ;x�i Þ and P �j ¼ Pðð1; 1Þ;x�i Þ.
It is easy to see that a minimal-cost tree in T x�i

is as follows. State (1,1) is connected to x�i , with
transition probability P �i . States (0,0), (0,1), and (1,0) are connected to (1,1) with transition
probabilities P((0,0),(1,1)) ¼ e2, P((0,1),(1,1)) ¼ e(1 � qB)2, and P((1,0),(1,1)) ¼ e(1 � qS)

2.
All other states are directly connected to x�i , with transition probabilities Pðð0; 2Þ;x�i Þ ¼ eqS ,
Pðð1; 2Þ;x�i Þ ¼ qS , Pðð2; 0Þ;x�i Þ ¼ eqB , and Pðð2; 1Þ;x�i Þ ¼ qB . Hence, the product of transition
probabilities in this tree is q2

Bq2
Sð1 � qBÞ2ð1 � qSÞ2P �i . The probabilities for x�j can be derived by

a permutation of indices B and S, thus the corresponding product is q2
Bq2

Sð1 � qBÞ2ð1 � qSÞ2P �j .
In the limit, l�ðx�j Þ=l�ðx�i Þ is determined by the quotient of these two products, which simplifies
to P �i =P �j . This leads to the following useful result (as sellers and buyers are identical profits only
depend on the number of sellers and buyers at a platform).

Lemma 13. Suppose pm,i(1,1,si) > pm,j(1,1,sj). Then for every j > 0 there is a �qS < 1 such that
l�ðx�j Þ < j for all qS > �qS .

Proof. It is easy to see that x�i is the only stochastically stable state if and only if pm,i(1,1,
si) > pm,j(1,1,sj) and pn,i(1,1,si) > pn,j(1,1,sj) (as it then needs more than 2 mistakes to get from
x�i to x�j ). If pn,i(1,1,si) ¼ pn,j(1,1,sj), P �i ¼ qSð1� qBÞqB þ 1

2qBð1 � qSÞqS þ 1
2qBqS and

P �j ¼ 1
2qBð1 � qSÞqS . If pn,i(1,1,si) < pn,j(1,1,sj), P �i ¼ qSð1 � qBÞqB and P �j ¼ qBð1 � qSÞqS .

Hence, in both cases P �i =P �j approaches zero if qS ! 1 and limqS!1 l�ðx�j Þ ¼ 0. Intuitively, if
sellers learn much faster then buyers, only the platform that offers higher revenues to sellers will
survive with a positive probability if both platforms are active. This induces the following strict
Nash-Equilibrium.

Proposition 14. There exists a �qS < 1 such that, for all qS > �qS , the platform profile ðs�i ; s�j Þ with
f �i ¼ f �j ¼ fmin and b�i ¼ b�j ¼ 21=3 is a strict Nash equilibrium.

Proof. As sellers� profits decrease in fi and reach their global maximum at b ¼ 21/3 it is clear
that pm;ið1; 1; siÞ < pm;ið1; 1; s�i Þ for any si 6¼ s�i . Suppose both s�i and some institution si 6¼ s�i are
available, and let x be the state where all traders are at si. By Lemma 13, for any j > 0 there exists
�qS such that l* (x) < j for all qS > �qS . Hence, for j small enough (and since there are finitely
many strategies), we obtain pD;iðsi; s�j Þ < pD;iðs�i ; s�j Þ for all si 6¼ s�i ; thus ðs�i ; s�j Þ is a strict Nash
equilibrium.

24 We assume for simplicity from now on that d is such that 21/3 2 B.
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It can be shown that, for qS large enough, bi � 1 is not chosen by any designer in any pure
strategy equilibrium. Moreover, in any mixed strategy equilibrium ðr�1; r�2Þ there is a least one
designer i where si 2 Cðr�i Þ implies that bi > 1.25 Note also that the condition on qS is a sufficient
but not a necessary one. For a smaller qS we cannot characterise the limit invariant distribution
and hence do not know the equilibrium behaviour of the designers. The result might hold even
for qS < �qS , depending on the details of the demand and supply conditions.

These results illustrate that the �Platform Design Paradox�, i.e. the fact that competition
between market designers might lead to the design of non-market clearing institutions, also
appears in the case of decreasing returns to scale.
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